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Abstract

How we see is today explained by physical optics and retinal transduction, followed by feature detection, in the cortex, by a bank

of parallel independent spatial-frequency-selective channels. It is assumed that the observer uses whichever channels are best for the

task at hand. Our current results demand a revision of this framework: Observers are not free to choose which channels they use. We

used critical-band masking to characterize the channels mediating identification of broadband signals: letters in a wide range of fonts

(Sloan, Bookman, K€uunstler, Yung), alphabets (Roman and Chinese), and sizes (0.1–55�). We also tested sinewave and squarewave

gratings. Masking always revealed a single channel, 1:6� 0:7 octaves wide, with a center frequency that depends on letter size and

alphabet. We define an alphabet’s stroke frequency as the average number of lines crossed by a slice through a letter, divided by the

letter width. For sharp-edged (i.e. broadband) signals, we find that stroke frequency completely determines channel frequency,

independent of alphabet, font, and size. Moreover, even though observers have multiple channels, they always use the same channel

for the same signals, even after hundreds of trials, regardless of whether the noise is low-pass, high-pass, or all-pass. This shows that

observers identify letters through a single channel that is selected bottom-up, by the signal, not top-down by the observer.

We thought shape would be processed similarly at all sizes. Bandlimited signals conform more to this expectation than do

broadband signals. Here, we characterize processing by channel frequency. For sinewave gratings, as expected, channel frequency

equals sinewave frequency fchannel ¼ f . For bandpass-filtered letters, channel frequency is proportional to center frequency

fchannel / fcenter (log–log slope 1) when size is varied and the band (c/letter) is fixed, but channel frequency is less than proportional to

center frequency fchannel / f 2=3
center (log–log slope 2=3) when the band is varied and size is fixed. Finally, our main result, for sharp-

edged (i.e. broadband) letters and squarewaves, channel frequency depends solely on stroke frequency, fchannel=10 c=deg ¼
fstroke=10 c=degð Þ2=3, with a log–log slope of 2=3. Thus, large letters (and coarse squarewaves) are identified by their edges; small

letters (and fine squarewaves) are identified by their gross strokes. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

We all see every day that object shape is usually in-
dependent of distance and size, provided it does not
exceed our acuity or visual field. This common obser-
vation suggests that the object-recognition process must
scale with size. Fig. 1 is a counter example. The same
letter-like object is reproduced at three sizes. There is a
big one in the middle of the figure. Down and to the
right are medium-sized (1=8 as big) and tiny (1=64 as

big) copies, otherwise identical to the big object. Con-
trary to the expected scale invariance, the appearance of
the object changes from being dominated by the letter
‘‘F’’ when it is large, to ‘‘E’’ at the intermediate size, to
‘‘D’’ at the smallest size. To confirm that this result is
not a printing artifact, we invite the reader to walk away
while looking at the large object, observing the same
changes in letter appearance.

The letter-like object is a hybrid of many letters, in
the spirit of the binary hybrids of Schyns and Oliva
(1999). We use a laplacian pyramid to select spatial
frequency bands (Burt & Adelson, 1983). Conceptually,
the object takes band 1 (0.5 cycle/letter) from the letter
‘‘A’’, band 2 (1 c/letter) from ‘‘B’’, band 3 (2 c/letter)
from ‘‘C’’, and so on. (In fact, to maximize contrast, we
omitted some never-visible low-frequency bands, so the
demo includes only C; . . . ;F.)
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Think of this as labeling. Anatomists label each
neural pathway by staining its source with a colored
dye. Here we label each octave of the spatial frequency
spectrum with a different letter. When you look at the
hybrid and call out a particular letter, you tell us what
part of the spectrum you used to identify it. From any
particular viewing distance, the appearance of each ob-
ject is dominated by one or two letters. As the big object

gets smaller, the dominant letter changes from ‘‘F’’ to
‘‘E’’ to ‘‘D’’ to ‘‘C’’. This indicates that visual letter
identification is size-dependent, using a different part of
the letter spectrum at each letter size. However, this
demo depends on the choice and alignment of letters,
making it difficult to analyze, so we present it merely as
an illustration of our result, which we prove by a more
rigorous method.

Fig. 1. Size affects shape. Except for size, the three objects are identical, yet, at reading distance, we see the large one as an ‘‘F’’, the medium one (1=8

as big) as an ‘‘E’’, and the tiny one (1=64 as big) as a ‘‘D’’. The letter you ‘‘see’’ and report tells us what frequency band your visual system uses to

identify the object. Within the object, each component letter has been filtered to a one-octave band of spatial frequency. The first band is ‘‘C’’; the

second is ‘‘D’’, and so on.
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Our method is a straightforward application of crit-
ical band masking, as developed by Solomon and Pelli
(1994). The threshold elevation produced by each noise
frequency provides an estimate of the gain at that fre-
quency for the channel that mediates the task, e.g. letter
identification (see Appendix A). The beauty of this
technique is that it requires only one assumption: noise
additivity. This section ends with a critical examina-
tion of two recent challenges to that assumption. Before
plunging into that, we review the somewhat confusing
literature on the channels that observers use to see let-
ters. Several labs, using various techniques, have pro-
duced apparently contradictory results. Happily, once
we throw in our new results, the discussion will show
that everyone has done their bit and all the results agree.
The consensus story is fairly simple, but quite different
in some ways from what the first papers had supposed.

1.1. Letters

Letters have a broad spatial frequency spectrum. It is
not clear which part of the spectrum observers use to
identify letters. Several studies have tried to address this
question by measuring how well observers identify let-
ters restricted to one band of spatial frequency (Parish &
Sperling, 1991; Alexander, Xie, & Derlacki, 1994; Gold,
Bennett, & Sekuler, 1999). They all found that observers
can identify a letter restricted to practically any octave-
wide band nearly as well as the unfiltered letter. Per-
formance suffered only when the information was re-
stricted to an extremely low or high spatial frequency
band (<1.5 or >10 c/object).

Using critical band masking of unfiltered letters,
Solomon and Pelli (1994) were surprised to find that
letter identification was mediated by a single spatial
frequency channel that seems to be the same as that used
to detect a sinewave. Despite the multiple useable bands
of spatial frequency information that should activate
multiple channels, the identification of 1� Bookman let-
ters (a–z) is mediated by a single visual channel centered
at 3 c/deg. Similarly, using critical-band masking of
continuous text, Scharff, Hill, and Ahumada (2000)
showed that readability of low contrast 0.25� text (Times
New Roman font) was most impaired by background
noise of 1.7 cycles per character.

The above studies restricted themselves to one font at
one size. Curious about the role of spatial frequency
channels in letter identification, we wondered how the
size and the shape of the alphabet would affect the ob-
server’s choice of channel. Using critical band masking,
we set out to characterize the channel mediating the
identification of letters of different alphabets, fonts, and
sizes. The fonts and alphabets we used cover a wide
range of complexities. Sloan and Bookman
were our simplest fonts, consisting of a few broad
strokes; K€uunstler and Yung (26

Chinese characters) were the most complex, being made
up of many fine strokes. For comparison, we measured
thresholds for the identification of filtered letters, the
discrimination between the two letters and , and the
detection of letters.

1.2. Gratings

We also measured thresholds for the detection and
orientation discrimination of sinewave and squarewave
gratings. Contrast sensitivity is the reciprocal of thresh-
old contrast. Sinewave contrast sensitivity has an in-
verted-U shape as a function of spatial frequency, rising
with a log–log slope of about 1 at low frequencies
(Campbell & Robson, 1968). Squarewave sensitivity is
similar at high frequencies, but is constant, with zero
slope, at low frequencies. Letter sensitivity is similar to
that for squarewaves (Ginsburg, 1978), and similar for
detecting and identifying (Pelli, Burns, Farell, & Moore,
in press). This makes it interesting to know whether the
same channels mediate identification of letters and de-
tection of squarewaves.

1.3. Channels

Independent detection by spatial-frequency-tuned
mechanisms (channels) gives a parsimonious explana-
tion for a wide range of simple tasks like the detection of
sinewaves (Graham, 1980, 1989). Summation, adapta-
tion, and masking studies reveal the existence of multi-
ple channels tuned to different spatial frequencies, with a
bandwidth of an octave or so (Pantle & Sekuler, 1968;
Blakemore & Campbell, 1969; Graham & Robson, 1987;
Stromeyer & Julesz, 1972; Wilson, McFarlane, & Phil-
lips, 1983). An observer asked to detect a sinewave uses
a single channel tuned to the spatial frequency of the
sinewave (Davis, Kramer, & Graham, 1983). Sinewaves
are narrowband, well suited for revealing mechanisms
with the narrowest tuning. We are not the first to try,
but experiments using broader-band signals, like letters,
might yet reveal broader channels. And since most of us
spend a lot of time reading––an hour a day gets us
through a billion letters by age 50––plastic neural
changes may optimize vision for letters, so letters might
be the right signal to reveal such channels.

1.4. Edges

Some studies using edges as stimuli suggested the
existence of broad channels. In the seventies many
thought that understanding how the visual system deals
with edges would be key to understanding how we seg-
ment the visual scene into discrete objects (Marr, 1982).
It seemed likely that one might find channels dedicated
to detecting edges. Shapley and Tolhurst (1973) and
Kulikowski and King-Smith (1973) used sub-threshold
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summation to isolate such edge detectors. They got
tuning functions that were broader than the typical oc-
tave-wide functions found for sinewaves, seemingly
demonstrating the existence of broadband edge detec-
tors. However, Graham (1980) demonstrated that the
broad tuning functions could be explained by proba-
bility summation (independent detection) among ordi-
nary octave-wide channels, without supposing any
broadband channels. Even so, edges do matter. Our
results are quite different for signals with and without
sharp edges.

1.5. Multiple channels

Lacking broadband channels, observers might still
identify broadband signals efficiently by using multiple
channels. Thomas and Olzak (1990) used compound
gratings to assess the observer’s ability to combine in-
formation from two channels. They superimposed two
suprathreshold sinewaves of similar orientations and
very different spatial frequencies, 3 and 15 c/deg, so that
no channel would respond to both. The observer’s task
was to detect small perturbations of one or both com-
ponents of the compound grating. When the two grat-
ings had the same orientation, Thomas and Olzak found
that observers were no better at detecting spatial fre-
quency perturbation of both components than of just
one, i.e. they were unable to combine this information
across channels. However, in later experiments, Olzak
and Thomas (1992) and Olzak and Wickens (1997)
found that observers do combine information across 3
and 15 c/deg when the perturbation is in orientation.
Both tasks seem equally relevant to ours––identifying
faint letters––so the opposite results offer no clear
guidance as to whether observers could use more than
an octave’s worth of letter identity information.

1.6. Size

For detection of sinewave gratings, we know that the
channel approximately scales with the spatial frequency
of the stimulus (Blakemore & Campbell, 1969; Stro-
meyer & Julesz, 1972; Banks, Geisler, & Bennett, 1987),
though the bandwidth (in octaves) may decrease some-
what with increasing center frequency (see Solomon,
2000). For object recognition tasks, the effect of size has
been investigated in two different ways. Some studies
simply documented that, as in real life, our performance
is not affected by size. Biederman and Cooper (1992)
and Fiser and Biederman (1995) showed that priming of
the identification of line drawings and photographs of
objects is unaffected by differences in size between prime
and target. Legge, Pelli, Rubin, and Schleske (1985)
found little change in reading rate over a 60:1 size range.
These studies suggest that visual processing scales with
size.

If, instead of identification, the observer is asked
whether the test is new or old (presented during train-
ing), then there are effects of size (and position and
orientation). Biederman and Cooper (1992) document
this dichotomy and suggest that the new vs. old judg-
ment is independent of the identification process, de-
pending instead on a sense of familiarity that is specific
to the retinal image.

Other studies looked at the effect of filtering the signal
on human performance at different sizes. Parish and
Sperling (1991) concluded that the efficiency for identi-
fying filtered letters in filtered noise is unaffected by size,
over the 32:1 range they tested. Alexander et al. (1994),
on the other hand, observed that the object spatial fre-
quency of maximum sensitivity shifted to lower fre-
quencies as letter size decreased.

Tjan, Braje, Legge, and Kersten (1995) found that
efficiency for identifying several silhouettes of common
objects increased slightly, from 5% to 8%, when target
size was decreased three-fold. Efficiency for letter iden-
tification increases gradually as size is reduced, with a
log–log slope of �1=3, over a 1000:1 range (Pelli et al., in
press; Pelli & Farell, 1999). This is scale dependence, it
has to be admitted, but it is a mild effect. A thousand-
fold reduction in size (a million-fold reduction in area) is
fully compensated by a mere 10001=3 ¼ 10-fold increase
in the contrast energy of the target. Such results led us to
think that, for something made of flesh and blood, the
visual system was impressively close to scale invariant.

1.7. The spatial frequency of letters

What properties of the letters in an alphabet affect
which channel (or channels) the observer uses to identify
them? Consider Sloan, , consisting of a few broad
strokes, and K€uunstler, , which has many fine strokes.
One might imagine that the observer would use a
channel tuned to a dominant spatial frequency in the
letter spectrum, but the letter spectra are roughly 1=f ,
with an obvious peak only at zero frequency.

Campbell and Robson (1968) introduced the notion
of spatial-frequency channels, and forced us all, ever
since, to consider the spatial frequency composition of
our stimuli. However, even though they called their
paper, ‘‘Application of Fourier analysis to the visibility
of gratings’’, they also showed that the Fourier trans-
form is not a reasonable model for the channels in our
visual system. The receptive fields (basis functions) of
the Fourier transform extend over the whole visual
scene, with countless bars and extremely narrow tuning,
whereas our visual system’s receptive fields are compact,
with few bars, and broad tuning (Robson, 1975). Thus
the Fourier power spectrum is a poor model for the
pattern of activity in our visual channels. For a letter
that has several bars, the Fourier power spectrum is very
sensitive to small deviations from perfect periodicity,
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whereas receptive fields will respond similarly whether
or not the bars are uniformly spaced. These arguments
might seem to recommend using some sort of wavelet
transform, but there are many troublesome details to
specify in such a model. Our goal here, after all, is to
characterize the stimulus and we would like that speci-
fication, as far as possible, to be independent of our
models.

So we defined stroke frequency as follows. We made a
horizontal slice through the letters of the alphabet (see
Section 2). For each letter we counted the number of
lines crossed by the cut. Averaged across all the letters,
this yields 1.6 for Sloan, 1.7 for Bookman, 2.6 for Yung,
and 2.8 for K€uunstler, which we divided by the average
letter width to get stroke frequency in stroke/deg, i.e. c/
deg. It turns out that stroke frequency is an excellent
predictor of the center frequency of the channel used to
identify letters.

1.8. Noise additivity

All our data are thresholds in low- or high-pass noise.
(This includes the special cases of no noise and all-pass,
i.e. white, noise.) We make two complementary analyses
of our data. Both analyses are based on the idea of noise
additivity. We say two noises are additive if the energy
threshold elevation produced by their sum equals the
sum of the threshold elevations produced by each noise
alone. We expect noise additivity only for thresholds
mediated by a single channel.

Our first analysis assumes noise additivity for
thresholds in low- (or high-) pass noise in order to in-
dependently estimate a channel tuning function for each
kind of noise. Our second analysis assesses additivity of
complementary low- and high-pass noises by computing
a ratio. As we will see, this sensitive test reports a vio-
lation of noise additivity, but the worst-case error in-
troduced by assuming noise additivity despite the
violation is quite small, underestimating contrast gain of
the channel by 0.1 log unit.

The premise, in our first analysis, is that the observer
will use the same channel in all low- (or high-) pass
noises (as in Solomon & Pelli, 1994). Pelli (1981) noted
mild assumptions about channel shape that guarantee
that the same channel will be optimal, independent of
cut-off frequency, when the signal is narrowband. When
we measure the threshold in two slightly different noise
cut-off frequencies, the broader of the two noises is, in
effect, the sum of the less-broad noise plus a narrow
band of noise that extends from one noise’s cut-off fre-
quency to the other’s. We take the difference in energy
thresholds as an estimate of the threshold elevation that
would be produced by the narrow band of noise alone (if
the observer used the same channel). The channel’s
tuning function is given by this noise sensitivity as a
function of frequency.

Dare we assume noise additivity? After all, visual
masking, in general, is still a murky topic that seems to
involve poorly understood processes like visual memory
and non-linear gain control (Breitmeyer, 1984; Swift &
Smith, 1983; Foley, 1994; Ahumada & Beard, 1997).
However, unlike masking by gratings (most of the
masking literature), it has always been found that the
elevation of threshold energy produced by random
white noise is proportional to the power spectral density
of the noise (see Pelli & Farell, 1999). In other words,
white noises are additive. With non-white noise, Bur-
gess, Li, and Abbey (1997) found an instance, in a
simulation of radiological images, where threshold ele-
vation is not proportional to noise power spectral
density (i.e. noise additivity fails). In this case, Burgess
et al., using low-pass plus a small amount of white
noise, found a shallow masking function (threshold el-
evation vs. noise power spectral density) with a log–log
slope of 0.6 instead of 1 (proportionality), which they
found for the other noise spectra, including white noise,
that they tested. The shallow masking function obtained
by Burgess et al. is similar to that found for masking by
gratings. After measuring masking by gratings and
noise in various tasks, Swift and Smith (1983) concluded
that ‘‘unfamiliar’’ masks act ‘‘as noise’’ and yield slope
1, whereas ‘‘highly familiar’’ masks are less effective and
yield a shallower slope near 0.65. Presumably the shal-
low slope arises when the observer can estimate and
somehow discount the relevant part of the mask. Bur-
gess et al. used fresh noise on every presentation, so it
was not familiar, but since it was low-frequency noise
and the signal was compact (a disk), perhaps the ob-
servers interpolated the surrounding noise to estimate
the noise in the region of the signal. Since low-frequency
noise is spatially correlated, an average of pixels sur-
rounding the signal disk would provide a good estimate
for the average noise value within the disk. This would
explain why Burgess et al. obtained the shallow masking
function only for (narrowband) low-frequency noise,
which can be interpolated, and not for (wideband) high-
frequency and white noises, which cannot be interpo-
lated. This kind of computational strategy is called
transparency: interpreting the light from each pixel as
the combination of contributions from more than one
object. Conceivably, a transparency mechanism, like
remembered noise (when noise is repeated), might help
the observer discount the noise in a contrast-dependent
way. We’ll come back to this when we review our re-
sults.

Our second analysis goes back to the threshold data
and directly assesses the additivity of complementary
high- and low-pass noises. We would expect additivity
to fail dramatically if the observer switched channel to
avoid noise, using different channels in high- and low-
pass noises. The failure will be more dramatic if the
channels are further apart.
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1.9. Off-frequency looking: choosing the channel

Perhaps the most basic and useful idea in modeling of
perception is independent detection by multiple recep-
tive fields, or channels (Weber, 1834; Sherrington, 1906;
Stiles, 1978; Campbell & Robson, 1968; Robson &
Graham, 1981). According to this model, the observer’s
threshold should be the threshold of the most sensitive
channel (or slightly lower, when there is probability
summation among many channels with similar sensi-
tivities, Robson & Graham, 1981). Since high-frequency
noise greatly elevates the thresholds of high- but not
low-frequency channels, we would expect the observer’s
threshold in high-frequency noise to be mediated by a
low-frequency channel and vice versa. As we will see,
our ‘‘noise-additivity ratio’’ gauges the observer’s ben-
efit from switching channels to avoid noise.

The ability of the observer to switch channels to
avoid noise was first explored in hearing. When asked to
detect a single tone in noise, Patterson and Nimmo-
Smith (1980) demonstrated that observers used a filter
with a tuning function that is shifted away from the
frequency of the tone. By such off-frequency listening the
observers improved their signal-to-noise ratio by up to
0.5 log unit. Similarly, Pelli (1981) concluded that ob-
servers can look off-frequency, but energy threshold for
the detection of a 4 c/deg sinewave was lowered by only
0.2 log unit.

The term ‘‘off-frequency’’ makes no sense for broad-
band signals, like letters, that have useful information at
many frequencies. But we can still assess the observer’s
ability to choose the channel with best signal-to-noise
ratio. In fact, broadband signals are better for this, be-
cause a narrowband signal, e.g. a sinewave, acts like a
short tether, limiting the observer to the octave-wide
range of channels that pass it. Letters, with their broad
spectra, offer the observer a wider range of channels that
pass some signal.

In our experiments we used both low- and high-pass
noise sweeps (i.e. testing with many cut-off frequencies)
to determine the channel(s) that mediate letter identifi-
cation. Our first analysis assumes that threshold eleva-
tion is proportional to the total noise power passed by
the channel. Our second analysis computes a noise-
additivity ratio to assess the observer’s ability to select a
channel that avoids the noise. For any given cut-off fre-
quency, our low- and high-pass noises are complemen-
tary; their sum is white all-pass noise. If the observer
uses the same channel in low-, high-, and all-pass noises,
then the sum of threshold elevations produced by the
low- and high-pass noises should equal the threshold
elevation by their sum (i.e. all-pass noise). If the useful
signal spectrum extends into bands on either side of the
noise cut-off frequency and, as is generally assumed, the
observer can select a channel to avoid the noise, then
the low- and high-pass noises should be much less ef-

fective in elevating threshold than white noise, which
cannot be avoided. The shortfall between predicted and
actual threshold in white noise tells us how much better
the observer (with all his or her channels) does than a
simple one-channel model in avoiding noise with
asymmetric spectra.

The noise-additivity ratio is

Eþ
low þ Eþ

high

Eþ
all

; ð1Þ

where Eþ ¼ E � E0 is the threshold elevation produced
by the noise, and the subscript indicates the type of
noise. The low- and high-pass noises have the same cut-
off frequency, and the all-pass noise is statistically the
same as their sum. The noise-additivity ratio for de-
tecting sinewaves is �0.2 log unit in the data of Pelli
(1981) and Solomon and Pelli (1994). For letters, with
their broad spectra, we would expect observers to ben-
efit much more, but Solomon and Pelli’s (1994) energy
thresholds for 1� Bookman letters show the same measly
�0.2 log unit ratio.

Solomon (2000) investigated this shortfall systemati-
cally, measuring threshold for a sinewave grating (0.125,
0.25, 0.5, . . ., 16 c/deg) as a function of cut-off frequency
(0–16 c/deg) of low- and high-pass noise at several noise
levels (0.003–0.03�). He did not calculate the noise ad-
ditivity ratio, but he did fit a single fixed-channel model
to all the data for each signal. Reminiscent of the Bur-
gess et al. results, the only discrepancy arose when the
noise was low-pass and the noise cut-off frequency was
half the frequency of the sinewave signal. In this con-
dition the signal threshold rose less than proportionally
with the noise (log–log slope about 0.8). Even with this
discrepancy, there was a good overall fit by the fixed-
channel model. This model assumes that the observer
uses the same channel in high- and low-pass noise. It
provided a better fit than a model that always uses the
channel with the best signal-to-noise ratio. For our
purposes, Solomon’s survey leads to two helpful con-
clusions. Firstly, there is no problem with high-pass
noise––noise additivity holds––so we can confidently
accept channel tuning estimates based on high-pass
noise. Secondly, Solomon’s results suggest that there is
something funny about the particular condition of low-
pass noise with a cut-off frequency that is half the signal
frequency, and that those thresholds may be low relative
to the rest of the thresholds, but that the rest of the data,
with higher and lower cut-off frequencies, are ok––noise-
additivity holds over the rest of the domain. We will
return to this in Section 3.

To put this in perspective, note that since the signal is
broadband it extends beyond the edges of the low- and
high-pass noise spectra. The ideal observer would use
just the noise-free part of the stimulus spectrum. It
would identify the signal perfectly, with an infinitesimal
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threshold, in either high- or low-pass noise, though it
has a substantial threshold in white noise, so its addi-
tivity ratio would be practically zero. Similarly, in high-
or low-pass noise, a human observer that could choose,
would select a (low- or high-frequency) channel that
received some signal and very little noise. If the channels
were several octaves apart, noise additivity would fail
dramatically. Indeed, it seems to us that the main benefit
to observers of choosing their channel would be to see
faint signals by avoiding noise. Finding that observers
fail to reap this benefit suggests that they lack the sup-
posed ability.

2. Methods

2.1. Display

The observer views a gamma-corrected computer
monitor (Pelli & Zhang, 1991). The video attenuator
drives just the green gun of the Apple 1700 Multiscan
color monitor. The background luminance is fixed at
about 16 cd/m2.

2.2. Letter identification

The observer fixates a small black square at the center
of the screen. Upon clicking the mouse, the fixation
point disappears and in its place a letter (the signal) on a
background of static noise is presented for 200 ms and
disappears. After a 200 ms delay, the whole alphabet is
displayed at 80% contrast. Fig. 2 shows a letter in noise
and the whole-alphabet display. The observer is asked to
identify the signal letter by clicking a letter in the whole-

alphabet display. The alphabet then disappears and the
fixation point reappears. A correct response is rewarded
with a beep.

2.3. Orientation discrimination

This task is identical to the letter identification task
except that the number of possible signals is restricted
to two. We used this task for letters (Sloan font) and
gratings (squarewaves and sinewaves). From Sloan we
used just the letters and , which are 90� rotations
of each other. The gratings alphabet consisted of hori-
zontal and vertical sinewaves or squarewaves. All the
gratings have Gaussian envelopes (see Section 2.10).

2.4. Detection

Two interval forced choice: after the fixation point
disappears, there are two 200 ms intervals of static noise
separated by 200 ms. The noise is independent in each
interval. The signal is added to one of the two intervals,
randomly selected, and afterwards the observer re-
sponds by clicking the mouse once if he or she thinks the
signal was in the first interval and twice if it was in the
second. In the case of grating detection, the signal was
a sinewave or a squarewave of a fixed orientation. For
letter detection, a new letter is randomly selected from
the whole alphabet for each trial. A correct response is
rewarded with a beep.

2.5. Threshold

For letters, we specify Weber contrast DL=Lbackground.
For gratings, we specify Michelson contrast ðLmax�
LminÞ=ðLmax þ LminÞ. For noise, we specify rms contrast

crms ¼ c2ðx; yÞh i0:5x;y , where the angle brackets indicate
expected value (over all x; y), cðx; yÞ ¼ ðLðx; yÞ�
LbackgroundÞ=Lbackground, and Lðx; yÞ is the luminance at
location x; y. The contrast energy of a letter is the
product of squared contrast and ink area. More gener-
ally, energy is the contrast power of the signal, inte-
grated over space E ¼

R R
c2ðx; yÞdxdy.

Threshold contrast is measured by 40-trial runs of the
modified Quest staircase procedure (Watson & Pelli,
1983; King-Smith, Grigsby, Vingrys, Benes, & Supowit,
1994) using an 82% correct criterion and a b of 3.5.
Threshold energy E for the alphabet is the average letter
energy (across all the letters) at the threshold contrast
for the alphabet. The reported threshold (log energy) is
averaged over several runs.

2.6. Observers

There were 11 observers. Table 1 lists which observers
were tested on each type of signal. For each signal type,

Fig. 2. Top: a letter at threshold contrast on a background of noise.

Bottom: the subsequently shown high-contrast display of the alpha-

bet from which the observer chooses a response. (The right answer

is ‘‘m’’.)
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each observer was tested at all sizes (spatial frequencies
in the case of gratings). For gratings, each observer was
tested with both squarewaves and sinewaves.

All observers were fluent readers of literature in
the alphabets they were tested on. In the case of the
K€uunstler display script, the results of the first 2000 trials
were discarded before collecting the data reported here.
This criterion is based on the finding that efficiency for
identifying letters from a new alphabet initially grows
rapidly but grows very slowly after 2000 trials (Pelli
et al., in press). All the observers had normal or cor-
rected-to-normal vision.

2.7. Stimuli

The stimuli were created on a Power Macintosh using
MATLAB and the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997; http://psychtoolbox.org). The back-
ground (the entire monitor) luminance was set to the
middle of the monitor’s range, about 16 cd/m2. The
stimulus consisted of a signal added to a background of
noise. The noise covered the signal and extended 25%
beyond its (invisible) bounding box. The signal was a
letter, a filtered letter, or a grating.

2.8. Letters

We used letters from several fonts and alphabets
at various sizes. We used the 26 letters of lower-
case Bookman and uppercase KuenstlerScriptTwo-
Bold (K€uunstler) fonts, which are commercially available
PostScript fonts from Adobe Systems. The 26-character
Chinese font, Yung, was created in Fontographer from
scans of calligraphy drawn by Yung Chih-sheng (Pelli

et al., in press). The 10 Sloan characters are specified by
the National Academy of Sciences-National Research
Committee on Vision (1980). We tested Sloan in its plain
and outline styles. 5� 7 is an upper-case font that was
commonly used on CRT terminals in the seventies.
Yung and Sloan are available from us for research
purposes. The retinal size of the letters was varied either
by changing the viewing distance or by changing the size
of the letter on the monitor. The letters and noise were
rendered using uniform square checks of fixed size at
either 2 or 4 pixels/side. Table 1 shows our fonts and
alphabets, and specifies the range of viewing distance,
pixel size (deg), letter width (deg), and stroke frequency
used in our experiments.

2.9. Filtered letters

For the filtered letters, we followed closely what
Parish and Sperling (1991) did. Note that Parish and
Sperling took height as letter ‘‘size’’, whereas here we
take width as letter ‘‘size’’. The letter size (width) of the
5� 7 font on the screen was 35 pixels. (Height was 45
pixels.) We filtered the letters of the 5� 7 font into six
octave-wide bands corresponding to six successive levels
of a laplacian pyramid (Burt & Adelson, 1983). We used
two of those bands. Band 2 was centered at 1.2 c/letter-
width (i.e. 1.5 c/letter-height), and band 4 was centered
at 4.5 c/letter-width (i.e. 5.8 c/letter-height). Varying
viewing distance from 6 to 384 cm produced letter sizes
from 12� to 0.2�.

2.10. Gratings

We used both sinewave and squarewave gratings at
various spatial frequencies. Gratings were vignetted by a

Table 1

Parameters of the various signals

Alphabet Width (deg) Stroke

frequency

(stroke/letter)

Stroke

frequency

(stroke/deg)

Pixel size

(deg)

Noise rms

contrast

Viewing

distance (cm)

Observers

Sloan 0.18–55 1.6 0.03–9 0.0037–0.20 0.15–0.35 10–550 MCP, IOF, AHC, MLL,

AS, JLL, RS

Sloan outline 1 3.2 3.2 0.029 0.15 70 MCP

Bookman 0.10–31 1.7 0.06–16 0.0037–0.10 0.15 20–550 IOF, AHC, KCH, MCP

Chinese (Yung) 0.25–15 2.8 0.17–10 0.0037–0.10 0.15–0.3 20–550 RH

K€uunstler 0.16–51 2.6 0.06–17 0.0037–0.40 0.15–0.35 5–550 IOF, AHC, MLL

5� 7 0.18–12 1.6 0.13–8.9 0.0050–0.33 0.15 6–384 MLL

Gratings See text 0.0037–0.20 0.15–0.35 10–550 MCP, MLL, EA, RS, AS,

AM

Sloan

Sloan Outline

Bookman . . .
Chinese (Yung) . . .

K€uunstler . . .

5� 7

The Sloan row includes identification (observers MCP, IOF, AHC, MLL, JLL, RS) and detection (observer MCP) of the full Sloan alphabet and

discrimination of (observer AS). The 5� 7 font was always bandpass filtered. Gratings include sinewaves and squarewaves.
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circularly symmetric Gaussian envelope. The 1=e space
constant was 1 period for sinewave grating detection and
3 periods for sinewave orientation discrimination. For
squarewaves the 1=e space constant was always 3 periods.

2.11. Noise

The noise is static, made up of square checks: 2� 2 or
4� 4 pixels. Each check is an increment or decrement
sampled from a zero mean Gaussian distribution trun-
cated at two standard deviations. The rms contrast of
the noise was usually set to 0.15. The power spectral
density of a random checkerboard (with stochastically
independent check luminances) equals the product of
contrast power and the area of a noise check. At a dis-
tance of 100 cm, a 2� 2-pixel check subtends 0.041� so
the power spectral density N is 0:152 � 0:0412 ¼ 3:7�
10�5 deg2. (Table 1 lists the range of rms noise contrasts
and pixel sizes used.) The white noise was then high- or
low-pass filtered at one of various cut-off frequencies.
MATLAB functions were used to fast Fourier trans-
form our noise matrix, zero all the unwanted frequen-
cies, and invert the fast Fourier transform. Our filtering
conditions included the two extremes of no noise and
all-pass noise.

The signal, like the noise, is uniform within each
check. This was achieved by computing the stimulus
image at 1=2 or 1=4 the final size and then expanding to
final size by pixel replication.

2.12. Stroke frequency

To measure stroke frequency, we drew a horizontal
rule through each letter of the alphabet at half the x-
height (of lowercase alphabets) or half the ascender
height (of uppercase alphabets and Chinese), and
counted the number of lines crossed by the rule. The
average count, across letters, is the strokes per letter for
that alphabet. To convert that to stroke/deg (i.e. c/deg)
we divide by the average letter width. To assess the ro-
bustness of this measure of letter spatial frequency, we
repeated the above procedure with rules of various
heights and orientations. We found that the various
estimates of stroke frequency varied no more than
�10% from what is reported in Table 1.

A particularly nice way to assess the effect of stroke
frequency on channel frequency is to compare results
with plain and outline versions of the same font,
since this change in style doubles the stroke frequency
without affecting size.

3. Results

Critical-band masking characterizes the spatial fre-
quency tuning of the channel(s) that mediate a task by

determining which noise frequencies interfere with the
performance of the task. Fig. 3 shows a few observers’
energy thresholds for letter identification (and grating
detection) as a function of the cut-off frequency of low-
(�) or high-pass (�) noise. We got similar masking
functions for all the signals and tasks we tested. As the
cut-off frequency of low-pass filtered noise is increased,
the threshold begins low at the left, at its no-noise level,
and rises monotonically, in a sigmoidal fashion, until it
reaches the threshold in white (all-pass) noise at the
right. The steepest increase is at the spatial frequencies
that interfere most with the task. In high-pass noise, the
masking function is similar but mirror-reversed: high at
the left, starting up at the threshold in white noise, and
descending monotonically to the no-noise threshold at
the right. Note that the fits to low- and high-pass
thresholds are independent; the asymptotes (thresholds
in no and all-pass noise) are not constrained to be equal.

For one font and size, Solomon and Pelli (1994)
showed that letter identification was mediated by a
single spatial frequency channel with a one- or two-
octave bandwidth. We have extended that result to all
our signals. To derive the channel tuning from the mask-
ing functions, we assume that the energy threshold is
linearly related to the total power passed by the channel
(filter) mediating the task (see Appendix A). The filter’s
tuning function is the first derivative of the masking
function in either high- or low-pass noise. Of course, the
derivative tends to emphasize the variance of the mea-
sured thresholds, resulting in noisy tuning curves. Ra-
ther than smoothing the curves afterwards, we assume a
parabolic form for the tuning (log gain vs. log fre-
quency) at the outset and make a maximum likelihood
fit of its integral to the thresholds. The fits to the data
are plotted as solid (low-pass) and dashed (high-pass)
lines in Fig. 3 (top row).

Fig. 3 (middle row) shows examples of channel tuning
functions obtained in this way. Since we used both low-
and high-pass noise, we got two tuning functions for
each signal set (an alphabet of particular font and size).
Power gain is plotted as a function of spatial frequency.
The functions are normalized to have a peak power gain
of 1. We defined bandwidth, in octaves, as the log2 of the
high-over-low ratio of the two frequencies at which the
power gain was 0.5 (i.e. full bandwidth at half height).
Appendix B examines the channel bandwidth and the
ratio of center frequencies. Both estimates turn out to be
too noisy to be of much use.

3.1. Off-frequency looking: choosing the channel

Our first analysis assumed noise additivity for low- or
high-pass noise. Our second analysis goes back to the
thresholds and tests for additivity of low- and high-pass
noises. The dashed line in Fig. 3 (bottom row) plots the
sum of threshold elevations in low- and high-pass noise
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for each cut-off frequency. If the noises were additive,
this dashed line would predict the solid line, which is
threshold elevation in white all-pass noise. The summed
elevations (dashed line) never fall far below the solid
line. The greatest difference occurs at the frequency
where the masking functions cross. We took the point of
maximum discrepancy for each pair of masking func-
tions and computed the ratio of predicted Eþ

low þ Eþ
high to

actual Eþ
all threshold elevation in all-pass noise. Negative

values indicate how much better (lower energy thresh-
old) the human observer does in filtered noise than ex-
pected for a single-fixed-channel model with the same
white-noise threshold. Fig. 4 shows histograms of that
noise additivity ratio for all kinds of signals used.
The geometric mean is �0.17 log unit. A central fea-
ture of channel theory has been the multiplicity of vi-
sual channels and the opportunity they offer to enhance

sensitivity by choosing the channel(s) with best signal-
to-noise ratio. These results show that the observer does
hardly any better in noise that is restricted to either side
of the signal frequency than one would expect from the
threshold in white noise.

This small discrepancy confirms Pelli (1981), who
claimed it (and the lateral shift of the tuning function) as
evidence for off-frequency looking (channel switching).
However, the whole point of switching channels is to see
a signal that would otherwise be invisible and this
measly �0.2 log unit reduction in threshold energy
seems too small to be of any practical importance. (Since
energy is proportional to contrast squared, the reduction
of log contrast threshold is only �0.1.)

For sinewave signals, which are narrowband, the
mere existence of the effect seemed of theoretical sig-
nificance (the channel changed), but finding the same

Fig. 3. Top row: Energy threshold as a function of cut-off frequency of low-pass (�) or high-pass (�) noise. The curves in the top two rows present

our first analysis, which assumes noise additivity for low- or high-pass noise. The curves in the bottom row present our second analysis, which tests

noise additivity of complementary low- and high-pass noises. In the two top rows, the solid (low-pass) and dashed (high-pass) lines are maximum-

likelihood fits based on the assumption that energy threshold is linearly related to the total noise power passed by the channel mediating the task (see

Appendix A). Each column of graphs is for a different signal or task: (a) Identification of 5 stroke/deg (0.5�) K€uunstler letters. (b) Detection of 3 c/deg

squarewaves. (c) Detection of 2 c/deg sinewaves. (d) Identification of 1.7 stroke/deg (1.7�) K€uunstler letters. (e) Identification of 0.3 stroke/deg (5.5�)
Sloan letters. (f) Identification of 6 stroke/deg (0.4�) Chinese (Yung) characters. Middle row: Channel tuning functions derived from the masking

functions in the top row (by taking the first derivative). The fits constrained the tuning functions to be parabolas in log power gain vs. log frequency

space. The bottom row assesses the observers’ ability to avoid noise by switching channel. The dashed line is the sum of threshold elevations in

complementary low- and high-pass noises Eþ
low þ Eþ

high. The solid line is the threshold elevation in the sum of noises (i.e. all-pass white noise) Eþ
all. The

dashed line consistently drops below the solid line when the cut-off frequency is near the channel frequency, but the effect is measly, a factor of 0.6 in

energy threshold (i.e. a factor of
ffiffiffiffiffiffiffi
0:6

p
¼ 0:8 in contrast threshold).

1174 N.J. Majaj et al. / Vision Research 42 (2002) 1165–1184



meager effect for letters, which are broadband, indicates
that observers are unable to switch channel to any useful
degree. Finding the same noise additivity ratio (�0.2 log
unit) for narrowband and broadband signals seriously
undermines Pelli’s (1981) interpretation of this effect as
off-frequency looking, since the observer of a broadband

signal ought to benefit much more from channel
switching, by looking further ‘‘off frequency’’. The �0.2
log unit deviation does show failure of additivity (of
complementary high- and low-pass noises) but we
suspect the failure is not due to channel switching.
As mentioned in Section 1, Burgess et al. (1997) and

Fig. 3 (continued)

Fig. 4. Noise additivity ratio for (a) letters, and (b) gratings (sinewaves and squarewaves). The log of the ratio of the sum of threshold elevations in

complementary low- and high-pass noises to the threshold elevation in all-pass white noise for gratings and letters. The ratio was calculated where the

discrepancy was greatest: at the crossing point of the low- and high-pass masking functions. The ratio evaluates the advantage the observer gains by

switching to a channel with better signal-to-noise ratio. Combining results for letters and gratings, the mean� sd is �0:17� 0:14 log unit, with a

mode of �0.18. The data include 102 signal sets: 6 for sinewaves, 6 for squarewaves, and 90 for letters.
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Solomon (2000) found non-additivity for low-pass
noise. Detecting sinewaves in one-dimensional noise,
Solomon found that thresholds were anomalously low
(and less than proportional to noise level) when the low-
pass noise cut-off frequency was half the signal fre-
quency. Graphs of threshold in low-pass noise as a
function of noise cut-off frequency have a sigmoidal
shape: see the solid curves in the top row of Fig. 3. The
effect of pushing down thresholds in the rising part of
the sigmoid is to shift the curve slightly to the right, to
higher frequency.

The most parsimonious interpretation of these facts is
that the observer uses the same channel in high- and
low-pass noise, but manages to discount the low-pass
noise somewhat. This could produce the slight (�0.2 log
unit) discrepancy from noise additivity, and shift the
low-pass masking function to slightly higher frequency
(0.5 octave higher, according to Fig. 9).

Even though the letters have broad spectra, we must
ask whether there is visually useable information in
bands other than the one used by the observer. Parish
and Sperling (1991), Alexander et al. (1994), and Gold
et al. (1999) showed that observers can identify letters
filtered to any one of several octave-wide bands. This
shows that each isolated band has visually useful in-
formation, sufficient for identification. Perhaps observ-
ers process letters differently when they are filtered, so
that the information used in an isolated band is inac-
cessible in an intact letter. As it happens, this is ruled out
by the unexpected finding (in ‘‘Sharp-edged signals,’’
below) that, at the right sizes, unfiltered letters are vi-
sually identified through a channel with center frequency
anywhere in a 6:1 range of object frequency.

3.2. Channel frequency vs. stroke frequency

How does letter size affect the center frequency of the
channel? We summarize the center frequency of the two
channels derived from the low- and high-pass data (like
Fig. 3) by reporting their geometric mean as the channel
frequency. In comparing effects of size across alphabets,
letter size, per se, is not the right parameter to plot. It is
well known that it is the frequency of a grating, not its
size (extent) that determines the channel frequency. As
explained in Section 1, we characterized letters by
measuring their ‘‘stroke frequency’’.

Our results exhibit a dichotomy between sharp-edged
signals (letters and squarewaves), which have broad
spectra, and bandlimited signals (filtered letters and sine-
waves gratings) which do not.

3.3. Sharp-edged (broadband) signals

Fig. 5a–c plot channel frequency as a function of
stroke frequency for all the sharp-edged signals we used.
The data for the various alphabets and squarewaves

superimpose, all falling on or near the dashed line. This
result was consistent across all 11 observers. For all of
our observers, over the wide range of fonts, alphabets,
and sizes we used, stroke frequency was the sole deter-
minant of channel frequency. (There are no free para-
meters: stroke frequency is a stimulus property and
channel frequency is a datum.) For example, outline and
plain Sloan both fall on that same channel- vs. stroke-
frequency line, even though, at the same size, outline
Sloan has twice the stroke frequency as plain Sloan.

The result in Fig. 5a–c is utterly unexpected. All the
letter data fall on a single line with a log–log slope of
2=3. If channel frequency scaled with stroke frequency
(or reciprocal of size), the data would have a unit slope.
Emphasizing that difference, Fig. 6a–c plot the ratio of
channel frequency to stroke frequency as a function of
stroke frequency. If the channel frequency equaled
stroke frequency, the ratio would be 1 and the slope
would be zero. Instead, the channel-to-stroke frequency
ratio diminishes gradually, with a log–log slope of �1=3,
from 6-fold for the largest letters to 1 (a match) for the
smallest letters.

These results demonstrate that the visual computa-
tion implementing letter identification is size-dependent.
At different sizes, the observer is using different fre-
quency components of the letter to identify it. This is
illustrated in Fig. 1, where each 8-fold reduction in size
results in a 81=3 ¼ 2-fold reduction in the object fre-
quency (c/letter) used by the observer. We identify large
letters by their (high frequency) edges, small letter by
their (low frequency) gross strokes.

This result is not unique to letter identification. Fig.
5c plots channel frequency as a function of stroke fre-
quency for discriminating between the Sloan letters
and , detecting any one of ten Sloan letters, discrimi-
nating horizontal from vertical squarewaves, and de-
tecting squarewaves. Regardless of signal (letters or
squarewaves) and task (detection or identification) the
data points all fall on the same dashed line.

We note that in the case of squarewave orientation
discrimination the high frequency points seem to lie
closer to the equality line. Of course, sine and square
wave results must converge at high frequency when the
higher frequency harmonics that distinguish them no
longer reach the retina (Campbell & Robson, 1968), but
this does not account for the convergence seen here at 1
c/deg.

3.4. Bandlimited signals

We also tested bandlimited signals: sinewaves and
filtered letters. These results are more or less as expected.
A bandlimited signal could only be detected or identified
by a channel whose passband includes it, so the ratio of
channel to signal frequency would have to be in the
range 0.5–2 or so.
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We tested sinewaves over a wide range of frequency,
0.05–10 c/deg, and found simple scaling. Fig. 7a plots
channel frequency as a function of center frequency. The
sinewave channels (� and d) fall along the unit-slope
solid line that indicates equality. Fig. 7b plots the ratio
of channel frequency to center frequency as a function
of center frequency. Again, there is some scatter, but the
sinewave data do not differ systematically from the solid
line that indicates equality of channel and signal fre-
quency.

Fig. 6. Sharp-edged (broadband) signals. The channel-to-stroke-fre-

quency ratio as a function of stroke frequency replotted from Fig. 5a–

c. All the data points lie near the dashed line (- - -) with a slope of �1=3,

fchannel=fstroke ¼ fstroke=10 c=degð Þ�1=3
. The dotted line ð� � �Þ, nearly su-

perimposed on the dashed line, is half the critical sampling density

reported by Legge et al. (1985), as explained at the end of our dis-

cussion.

Fig. 5. Sharp-edged (broadband) signals. Channel frequency as a

function of stroke frequency. Channel frequency is defined as the

geometric mean of the center frequencies estimated (independently)

with high- and low-pass noise (see middle row of Fig. 3). (a) Identifi-

cation of unfiltered letters. Each font is plotted using a letter from its

alphabet: for Sloan (observer IOF), for Bookman (IOF), for

K€uunstler (IOF) and for Yung (Chinese) (RH). (b) Results for other

observers: for Sloan (observer AHC), for outline Sloan (MCP),

and for Bookman (AHC). (c) Discrimination and detection of un-

filtered letters and squarewave gratings. for the discrimination of the

Sloan letters and (AS), for the detection of Sloan letters

(MCP), squares � for the discrimination of horizontal from vertical

squarewaves (AS) and diamonds } for the detection of squarewaves

(MCP). Whether the signals are squarewaves or letters, whether the

task is identification, discrimination, or detection, all the data points lie

on or near the same line (- - -), fchannel=10 c=deg ¼ fstroke=10 c=degð Þ2=3.
This shows that stroke frequency is the sole determinant of channel

frequency for all our sharp-edged signals. Results for further observers

(not shown) were very similar: Sloan (JLL, MLL, RS, MCP), Book-

man (MCP, KCH), K€uunstler (MLL), Squarewaves (AM, MLL, EA,

RS).
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Some studies that used sinewave grating masks to
reveal spatial frequency tuning have argued for a limited
number of spatial frequency channels that do not extend
much below 1 c/deg (Wilson et al., 1983). Our results are

more in line with noise masking studies that reveal
channels at frequencies as low as 0.1 c/deg (Stromeyer &
Julesz, 1972; Stromeyer, 3rd, & Klein, 1982). It is not
clear why masking with gratings failed to find the very
low frequency channels that are revealed by noise
masking.

For filtered letters, the story takes another turn. The
letters were bandpass filtered and presented at various
sizes (0.18�, 0.59�, 1.8�, and 5.9� for high-pass letters;
0.18�, 0.59�, 1.8�, and 11.8� for low-pass letters). The L’s
and H’s in Fig. 7 are the channel frequency for letters
filtered to a low- or high-frequency band centered at 1.5
or 5.8 c/letter, respectively. Fig. 7a plots channel fre-
quency as a function of the center frequency of the fil-
tered letter. The data say three things of increasing
subtlety.

First, before reading this paper, one might have ex-
pected that channel frequency would equal center fre-
quency, regardless of how the center frequency was
produced (i.e. a sinewave, or the low band of a small
letter, or the high band of a large letter). And, in fact,
the data are all within a factor of 3 of the equality line.
But that is not the whole story.

Second, consider the isolated effect of size. All the L’s
(and all the H’s) have the same filtering (in object fre-
quency). Despite some scatter, the L’s follow the unity-
slope equality line, and the H’s trace a unit-slope line
about a factor of two below the equality line. Similarly,
in Fig. 7b, the L’s trace a flat line just below (geometric
mean 0.9), and the H’s trace a nearly flat line a factor of
two below (geometric mean 0.4) the now-horizontal
equality line. Thus, for filtered letters (unlike unfiltered
letters), channel frequency does scale with size.

Third, consider the isolated effect of filtering. For
each size, the pair of data points representing the low-(L)
and the high-(H) pass filtered letters are connected by a
dotted line. Since the channel frequency for lowpass
letters is at the equality line, and that for the highpass
letters is below the equality line, the connecting dotted
lines are shallower than the equality line. For each letter
size, the observer must be using whatever band the letter
is filtered to, but the channel scales less than propor-
tionally with the band. Chung et al. (2001) reported a
similar result in a different context. They measured the
masking effect of a filtered letter on the identification of
an adjacent filtered letter. They found a similar fre-
quency dependence: at each size, letters filtered to low
(or high) spatial frequencies were maximally masked by
letters that were filtered to a less low (or less high) fre-
quency. For a fixed-size target letter, filtered to various
bands, the observer’s channel frequency is a shallow
function of the center frequency (average� se log–log
slope of 0:5� 0:2 in our small data set, 0.7 in Chung
et al., i.e. roughly 2=3 overall). But, as noted above, both
in our results and those of Chung et al., if we take a
fixed-band (in object frequency) and vary size, then the

Fig. 7. Bandlimited signals: filtered letters and sinewaves. The filtered

letters are based on the 5� 7 font used by Parish and Sperling (1991).

The letters were bandpass filtered. The L’s are results for letters filtered

to a low-frequency octave-wide band centered at 1.2 c/letter (observer

MLL). The H’s are results for letters filtered to a high-frequency oc-

tave-wide band centered at 4.5 c/letter (observer MLL). The sinewave

results are plotted as open � (MLL) and filled d (AS) circles. (a)

Channel frequency as a function of center frequency. The sinewave

data are close to the unit-slope solid line indicating equality,

fchannel ¼ f . The low-frequency-letter data are also close to the equality

line (geometric mean of fchannel=f is 0.9), but the high-frequency-letter

data are below it (geometric mean of fchannel=f is 0.4). A roughly

fourfold increase in center frequency (4:5=1:2 ¼ 3:8) produced roughly

twofold (3:8� 0:4=0:9 ¼ 1:7) increase in channel frequency; the aver-

age log–log slope of the dashed lines is 0:5� 0:2, which is consistent

with the tighter estimate of 0.7 of Chung, Levi, and Legge (2001), so we

take 2=3 as an overall summary. (b) The channel-to-center-frequency

ratio as a function of center frequency replotted from (a). The sinewave

grating (open � and filled d circles) and low-frequency filtered letter

(L) results fall near the equality line (––), which now has zero slope.

The high-frequency (H) filtered letter results lie below the equality line,

as in (a). Results for further observers (not shown) were very similar:

Sinewaves (AM, EA, RS).
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observer’s channel frequency is proportional to center
frequency (log–log slope 1). 3

4. Discussion

Before the advent of computers, the best typogra-
phers changed letter shape with size (Rubinstein, 1988).
Larger letters were given more detail, emphasizing the
higher frequency components of the letter, while smaller
letters were rendered bolder, emphasizing the lower
frequency components. No doubt these shape changes
were made to compensate for limitations of both
printing and seeing, but they are consistent with our
finding of scale-dependence in vision. But how can we
reconcile our results with studies that concluded that
object recognition, especially letter identification, is scale
invariant? Let us review them.

Legge et al. (1985) investigated the visual require-
ments of reading by measuring reading rate as a func-
tion of several variables. As a function of letter size,
reading rate has an overall inverted-U shape with a wide
plateau covering a 60:1 range. They also looked at the
effects of low-pass filtering and sampling on reading
rate. With low-pass filtering, reading rate increases with
bandwidth up to 2 cycle/character, independent of size.
Based on this result, they suggested that a single spatial-
frequency channel sufficed for reading, with the channel
scaling with the size of the letter. However, their sam-
pling data tell a different story. For optimum reading
rate for text seen through a sampling grid, large letters
require more samples per character than small letters.
Critical sampling density (samples/character) increased
as a function of letter size with a log–log slope of 0.3 (i.e.
about 1=3). This difference parallels the filtered vs. un-
filtered dichotomy in our results, as we will see below.

Parish and Sperling (1991) compared the perfor-
mance of human and ideal observers in identifying a
filtered letter in filtered noise. They found only a small
effect of viewing distance on efficiency, which they at-
tributed to the sharp edges of the pixels. In their con-
clusion, they dismissed this effect as an artifact of the
display and concluded that over their 32:1 size range,
letter identification was scale invariant.

Thus, like Harmon and Julesz’s (1973) discussion of
their blocky pictures of Abraham Lincoln, Legge et al.
(1985) and Parish and Sperling (1991) suggested that

letters are masked by the sharp edges of the screen
pixels, which are only visible from near. According to
them, this masking reduced both the reading rate and
letter identification efficiency of large letters because
those were studied at close distances.

Alexander et al. (1994) measured threshold for iden-
tifying a filtered Sloan letter at two sizes, flickering at 16
Hz. For each size, they bandpass filtered the letters and
determined which octave-wide frequency band gave the
lowest threshold for letter identification. At a letter size
of 0.3 log MAR (9 stroke/deg), the lowest contrast
threshold was obtained when the letters were filtered to
the band centered at 1.25 c/letter. For a larger letter size
of 0.7 log MAR (4 stroke/deg) the best band shifted up
to 2.5 c/letter. They concluded that the object spatial
frequency (c/letter) of maximum sensitivity increases
with letter size.

As mentioned in Section 1, these studies do not resolve
the role of size in letter identification. Apparently similar
experiments seem to contradict each other. In reading,
low-pass filtering the letters reveals a critical bandwidth
(2 c/letter) independent of scale, yet reading through a
sampling grid shows that more samples are needed to
achieve maximum reading rate for larger letters. In letter
identification, Parish and Sperling (1991) show that in
the presence of noise, optimal performance is achieved
when letters are filtered to a band centered at 1.5 c/letter,
independent of size. Yet Alexander et al. (1994) report
that, without noise, the optimal band shifts to higher
object frequency (c/letter) when letter size increases.

Our results describe the role of spatial-frequency
channels in letter identification and suggest a framework
that provides a coherent account of all the prior work,
dispelling the apparent contradictions.

4.1. Letter identification is bottom-up

It is well known that multiple spatial-frequency
channels are available to detect and discriminate grat-
ings (Campbell & Robson, 1968). Like everyone else, we
supposed that channel selection is top-down: the ob-
server learns to choose whichever channel(s) are best
suited to the task. Furthermore, it seemed quite possible
that observers, having read for years, might have de-
veloped specialized channels that match the broad
spectra of the letters. Or, perhaps, learn to combine
information across multiple octave-wide channels.

Having explored a wide range of stimulus conditions
(alphabets, fonts, sizes, low- and high-pass noise), we
can confidently say that all three of our conjectures,
above, are wrong: The channels used to identify letters
are not selected top-down, are not broadband, and are
not combined across frequencies. Our results confirm
and generalize Solomon and Pelli’s (1994) findings for
1� Bookman letters. Firstly, for every task we studied,
observers always rely on a single 1:6� 0:7 octave

3 Chung et al. (2001) did not draw attention to this dichotomy, but

it is clear in their graphs. Their Fig. 5 shows the 0.7 log–log slope of the

best masking frequency as a function of which target band is selected

(1.3–3.5 c/letter), and their Fig. 11 replots the same filtered-letters data

(gray filled symbols) showing a log–log slope of 1 as a function of

target spatial frequency (1.3–13 c/deg) when size is varied. (Ignore the

other points, which are not for letters, and the shallow line fitted

to them.)
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channel. Secondly, the choice of channel mediating let-
ter identification is determined solely by the properties
of the signal, independent of the properties of the noise.
(The small �0.2 log unit deviation from noise additivity
and the small 0.5 octave apparent shift in channel
frequency seem better explained as discounting of low-
frequency noise rather than as evidence of channel
switching.) Although the observers have multiple chan-
nels, they persist in using the same channel for the same
signal, failing to use different channels for different
noises. Our observers were tested in 40-trial runs, with
the same low- or high-pass noise spectrum on every trial.
We expected the observers to learn to use a different
channel, shifting to avoid the noise, but instead, the
observers persist in using the same channel, independent
of the noise. The channel is selected bottom-up by the
signal, not top-down by the observer.

4.2. Edges matter

The rest of our results concern the properties of the
signal that determine the center frequency of the channel
being used. There is a dichotomy in our results between
signals that have sharp edges and those that do not.
On the one hand, we have the results for sharp-edged
(broadband) signals: unfiltered letters and squarewaves.
For these signals, stroke frequency was the sole deter-
minant of channel frequency, and channel frequency
increased as the 2=3 power of stroke frequency. (A slight
exception is that the high frequency squarewave results
seem slightly lower and steeper.)

Scale dependence disappeared when we used band-
limited signals: sinewaves and filtered letters. With the
filtered letters, we independently manipulated the letter
size and the frequency content. Both are important in
determining the channel frequency. Whether the letter is
restricted to a low- or high-frequency band, when only
size is changed, channel frequency scales proportionally
(log–log slope of 1) with center frequency. However,
when a fixed-size letter target is bandpass filtered with
various center frequencies, the channel frequency in-
creases less than proportionally with center frequency
of the target (log–log slope of 2=3, summarizing our
0:5� 0:2 and the tighter estimate of 0.7 by Chung et al.
(2001)). In our results (Fig. 7), channel frequency is only
2� higher for same-size letters with 4� higher center
frequency.

4.3. Consensus

Let us now re-examine the results of previous studies
in light of our finding that the signal, not the observer,
selects the channel. As Fig. 1 demonstrates, our results
confirm the Alexander et al. (1994) finding that the
optimal spatial frequency band shifts to higher object
frequency (c/letter) when letter size increases.

In their reading experiments, Legge et al. (1985)
manipulated the letters in two different ways, producing
two different results. Low-pass filtering the letters re-
vealed a scale-independent process: observers needed the
frequencies up to 2 c/letter to achieve maximum reading
rate at every letter size. When they measured reading
rate for text displayed behind a sampling grid, they
discovered that reading larger letters requires more
samples per letter.

Assuming that reading shares the limitation we have
found for letter identification, our results provide an
explanation for these seemingly contradictory results. In
the case of filtered letters (Legge et al., 1985; Parish &
Sperling, 1991), the observers used a channel frequency
proportional to the signal frequency, so everything
scaled. In the case of sampled letters (text behind a grid,
Legge et al., 1985) the letters are still sharp-edged so it is
appropriate to compare their results with our letter data
in Fig. 6a. Plotting their results on our graph, taking
half their critical sampling frequency as an estimate of
channel frequency, yields the dotted line, indistinguish-
able from our results. Thus there is an empirical di-
chotomy between results for filtered vs. unfiltered letters,
but perfect harmony among published reports.

4.4. Squarewaves

As noted above, we were very surprised to find that
channel frequency does not scale with letter stroke fre-
quency. One might chalk that up to ignorance––letter
identification has received much less attention than grat-
ing detection. But it turns out that detection of square-
wave gratings yields essentially the same result, falling
near the same line as our letter data. Campbell and
Robson (1968) built much of their case for channels on
a thoughtful comparison of sensitivity (reciprocal of
threshold contrast) for squarewaves and sinewaves as a
function of size (i.e. spatial frequency). They tried to
account for squarewave sensitivity in terms of sensitivity
to its component sinewaves. At high frequencies (>1
c/deg) sensitivity to the squarewave equals sensitivity to
just its fundamental sinewave component. At low fre-
quencies (<1 c/deg), sinewave sensitivity falls off, in
proportion to frequency, while squarewave sensitivity
remains high, about 200, independent of spatial fre-
quency. This shows that observers detecting low-fre-
quency squarewaves use the higher harmonics, and it
was later shown that they do not use the fundamental
frequency component (Campbell, Howell, & Robson,
1971; Burr, 1987). This dichotomy violates scaling,
showing that detection of low-frequency squarewaves is
mediated by detection of the higher harmonics, whereas
detection of high-frequency squarewaves is mediated by
detection of the fundamental.

It is daunting to realize that we still have not out-
distanced the foresight of Campbell and Robson’s
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(1968) paper, with its simple measures and models. Even
so, there is something new here. They measured sensi-
tivity, on a blank background, and explained it by
supposing a bank of independent channels. In princi-
ple, one might have predicted the scale-dependent
appearance of our demo (Fig. 1) from the known
scale-dependence of sensitivity, by supposing that the
component we are most sensitive to at threshold will be
the most salient at suprathreshold contrast. In a similar
vein, Tjan, Chung, and Legge (2001) did an ideal ob-
server analysis, supposing a noise that would give the
otherwise-ideal observer a human contrast sensitivity
function, and finding that this model observer detects
larger letters using higher object frequencies. Again,
extrapolating from sensitivity to salience, this might
explain Fig. 1. However, none of this is relevant to ex-
plaining our main result. Sensitivity depends on signal-
to-noise ratio. Which channel is most sensitive to a
broadband signal depends on the noise spectrum. In a
successful critical-band masking experiment, the added
noise must be strong enough to greatly elevate thresh-
old, dwarfing the observer’s internal noise. In these
conditions, an observer using the most sensitive channel
(as in Campbell & Robson, 1968) or an ideal observer
with human equivalent input noise (as in Tjan et al.,
2001) would find and use any frequency band that in-
cludes signal with little or no noise. When the signal is
broadband, any hypothesis of channel selection based
on sensitivity will predict very different revealed tuning
in high- vs. low-pass noise, contrary to our results. In-
stead, we find more-or-less the same channel in high-
and low-pass noise. Somehow the properties of the
signal itself are determining which channel the observer
uses, independent of the noise.

4.5. High-noise efficiency

Thresholds measured on a background of white
noise, strong enough to dwarf the equivalent input
noise, show that high-noise efficiency for letter identifi-
cation is only weakly size-dependent, with a single
shallow log–log slope of �1=3 over the entire range of
spatial frequencies (Pelli et al., in press; Pelli & Farell,
1999). Our new result, that the channel:stroke frequency
ratio is size-dependent, offers a potential explanation for
this effect of letter size. Efficiency for letter identification
is highest for small letters, where channel frequency
matches stroke frequency, and gradually falls for larger
letters, as the channel:stroke frequency ratio rises.

5. Conclusion

For each alphabet, font, and size, letter identification
is mediated by a single one-or-two-octave-wide visual
channel. Even in the presence of very asymmetric noise

distributions, observers continue using the same channel
to identify and detect letters and gratings. Together,
these two findings say that the channel is selected bot-
tom-up by the signal, not top-down by the observer.

Which signal properties determine channel fre-
quency? For bandlimited signals (filtered letters and
sinewaves), when only size is changed, the channel fre-
quency scales proportionally with the object’s center
frequency fchannel / fcenter, but when only the filter-
selected band is changed, the channel frequency scales
less than proportionally fchannel / f 2=3

center.
For sharp-edged signals (letters and squarewaves),

stroke frequency is the sole determinant of channel
frequency, fchannel=10 c=deg ¼ fstroke=10 c=degð Þ2=3. The
non-unit exponent tells us that the computation medi-
ating (sharp edged) letter identification is size-depen-
dent. At different sizes, the observer uses different
frequency components of the letter to identify it. Large
letters are identified by their edges, small letters by their
gross strokes.

The channel frequency estimated in low-pass noise is
1.4� higher than that estimated in high-pass, and ob-
servers achieve energy thresholds 0.2 log unit better than
that predicted by noise additivity. These small effects
were once taken as evidence for channel switching (‘‘off-
frequency looking’’), when obtained for a narrowband
signal, but when replicated with broadband signals they
show that observers are, as a practical matter, unable to
switch channel. We tentatively attribute both effects to
discounting of low-frequency noise.
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Appendix A. Analysis of channel tuning

The analysis we perform here is a slight extension of
that used by Solomon and Pelli (1994). (We have
changed the notation slightly, replacing G2 by G.) They
used critical-band masking to characterize the channel
mediating letter identification. Their linking assumption
(noise additivity) makes it possible to derive the fre-
quency-dependent gain of an inferred filter, the channel
mediating the task, from thresholds measured in filtered
noise. Like them, we assume that the signal thresh-
old energy E is linearly related to the total noise
power passed by the linear filter Gðf Þ that mediates the
task:

E ¼ E0 þ a
Z 1

0

df 2pfGðf ÞNðf Þ ðA:1Þ

E is the energy threshold, E0 is the threshold measured
without noise, a is a constant, f is the radial frequency,
Gðf Þ is the power gain of the filter, and Nðf Þ is the
power spectral density of the displayed noise. (In the
experiments reported here, the noise power spectrum
was always circularly symmetric.) N is the power spec-
tral density of the all-pass noise. Assuming Eq. (A.1) is
equivalent to assuming noise additivity (see Section 1).

We derive the power gain Gðf Þ of the channel by
measuring the energy threshold elevation Eþ ¼ E � E0

at many low- or high-pass cut-off frequencies of the
noise and then taking the derivative of the energy with
respect to the cut-off frequency.

Glowðf Þ ¼
1

a2pfN
dEþ

low

df
ðA:2Þ

Ghighðf Þ ¼
�1

a2pfN

dEþ
high

df
ðA:3Þ

Solomon and Pelli (1994) plotted essentially these de-
rivatives with all their ugly wrinkles. Here we assume a
parametric form for the filter (log power gain is a par-
abolic function of log frequency)

logGðf Þ ¼ b0 þ b1 log f þ b2ðlog f Þ2 ðA:4Þ
and estimate its parameters by a maximum likelihood fit
(minimize rms error in log energy thresholds).

In Fig. 3, the top row shows the measured thresholds
and the fits in the presence of low-pass noise (�, solid
line) and high-pass noise (�, dashed line). The middle
row shows the inferred filters in low-pass (solid line) and
high-pass noise (dashed line).

Appendix B. Bandwidth and ratio

Fig. 8 shows histograms of the channel bandwidths
for all our signals. The solid line is derived from low-
pass noise data and the dashed line is derived from
high-pass noise data. The mean bandwidth is 1:6� 0:7
octaves (mean� sd), consistent with the 1–2 octave es-
timate obtained for sinewaves using adaptation and
sub-threshold summation experiments (Blakemore &
Campbell, 1969; Graham & Robson, 1987).

Fig. 9 is a histogram of the ratio of the center fre-
quencies of the channels measured in low- and high-pass
noise. The flow-pass=fhigh-pass ratio was calculated to de-
termine whether the observers switch channels to avoid
noise. We would expect the observer to use a higher-
frequency channel when the noise is low-pass and vice

Fig. 8. The bandwidths of the channels for the tasks and signals we studied. (a, left) letters. (b, right) gratings (sinewaves and squarewaves). For each

signal, two channels were derived independently from thresholds in low- and high-pass noise (Fig. 3). The bandwidth in octaves was calculated as log2
of the high-over-low ratio of frequencies at which the power gain of the channel was 0.5 (full bandwidth at half height). Within each graph, two

histograms are plotted: the solid line (––) is a count of low-pass channel bandwidth, and the dashed line (- - -) is the count of high-pass channel

bandwidths. The mean� sd bandwidth for low- and high-pass channels is 1:53� 0:7 and 1:62� 0:8 octaves. The data include 102 signal sets, as in

Fig. 4.
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versa for the high-pass noise. The mean � sd is 0:5� 0:7
octaves, with a standard error of 0.06, significantly
greater than zero, but too noisy to conclude more.
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