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The task of detection requires that at least one target component (i.e. “feature”) be detected, while the
task of identification requires the detection and integration of multiple features into a recognizable
object. Enumeration seems to involve aspects of both feature detection and object identification. As in
identification, it requires the detection of multiple features, but as in detection, it does not require the
explicit encoding of a global form. Enumeration of briefly presented objects is accurate up to the “subi-

Key ',”f’r_ds" tizing capacity” of 3-5 items. We discuss the relation of enumeration to visual detection and identifica-
iﬂzﬂiz:;g tion by considering the effect of target visibility on subitizing capacity. We found that while the
Enumeration distribution of enumeration responses changes with contrast, subitizing capacity is generally invariant
Probability with contrast until it nears detection threshold. These results suggest that component detection (associ-
Detection ated with number estimation) and component integration (associated with subitizing) behaved differen-
Object identification tially as contrast was manipulated. We speculate that subitizing capacity is linked to the approximate
Gestalt number of detected features adequate for recognizing shapes.

Perceptual organization

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Historically, vision science has been concerned with the limits of
vision, such as the faintest light that can be detected or the smallest
letter that can be identified. Here, we are interested in the limits of
visual enumeration and, more specifically, in the highest number of
elements that can be precisely apprehended at a glance. Exploring
the processes underlying visual enumeration may uncover mecha-
nisms that intersect number representation, perceptual organiza-
tion, attentional selectivity and working memory.

Most enumeration studies have found a discontinuity between
enumerating small and large numbers, which has been taken to re-
flect two separate cognitive mechanisms. Enumeration of about
four or fewer elements is fast and precise, and has been referred
to as “subitization” (Kaufman, Lord, Reese, & Volkmann, 1949). Enu-
meration of about five or more elements has been labeled as count-
ing or estimating. If there is sufficient time, observers may count
each item slowly and serially; if not, they may quickly and impre-
cisely estimate the number of items in parallel (Dehaene, 1992).

One prominent theory of subitization is the FINST (fingers of
instantiation) model, introduced by Pylyshyn and colleagues (e.g.,
Pylyshyn, 1994; Trick & Pylyshyn, 1993, 1994). It proposes that
enumeration within the subitizing range is mediated by a lim-
ited-capacity index that tags individual items without the need
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for focused attention. When the number of items to be enumerated
exceeds the FINST capacity, then attention must be deployed seri-
ally to multiple spatial locations. Others have proposed a similar
limited mechanism within short-term working memory capacity
(Cowan, 2001), spatial frequency filters (Atkinson, Campbell, &
Francis, 1976) or polygon formation (Mandler & Shebo, 1982).

Despite the accumulated evidence in favor of the idea that enu-
meration is handled differently within the subitizing range (i.e., a
discontinuous enumeration function), the issue is not entirely set-
tled. For example, one of the proposed hallmark of subitization is
its “preattentiveness” (Trick & Pylyshyn, 1993, 1994). Yet more re-
cent evidence suggest that enumeration both within and beyond
the subitizing capacity is modulated by attention (Burr, Turi, &
Anobile, 2010; Egeth, Leonard, & Palomares, 2008; Olivers & Wat-
son, 2008; Railo, Koivisto, Revonsuo, & Hannula, 2008).

Thus it is possible the enumeration function might be a contin-
uous nonlinear function that only involves a single cognitive pro-
cess. Van Oeffelen and Vos (1982) observed that although the
differences between successive numbers are constant (e.g. 2-1;
6-5), the ratios (e.g. 1/2; 5/6) between successive numbers de-
crease as the number of objects increases following a power func-
tion with an exponent of —1 (see also Revkin, Piazza, Izard, Cohen,
& Dehaene, 2008). This observation underscores the possibility
that enumeration performance may decrease in a nonlinear way.
Furthermore, thorough analysis of reaction time distributions for
enumeration resulted in no significant discontinuity for enumerat-
ing small and large numbers (Balakrishnan & Ashby, 1991, 1992).
Aside from behavioral work, brain-imaging studies have also been
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inconclusive. Using PET, for example, Sathian et al. (1999) found
that subitizing and counting have different cortical networks while
Piazza, Mechelli, Butterworth, and Price (2002) found otherwise.

Previous enumeration studies have mostly used highly visible
elements, making them susceptible to a ceiling effect that could re-
sult in flat accuracies in the subitizing range. A classic study on
enumeration accuracy as a function of presentation time and lumi-
nance resulted in a discontinuity in the enumeration function at
eight elements (Hunter & Sigler, 1940). We extend this study by
further controlling for element visibility. First, we display our ele-
ments along a single eccentricity to maintain more uniform visibil-
ity, as elements that fall closer to the fovea might be better
enumerated. Second, we control for changes in brightness in our
display because we manipulate contrast (Michelson definition)
rather than luminance. Luminance presents a confounding cue,
since observers might potentially use overall display brightness
as a substitute for number. Third, we account for visual crowding
(Pelli, Palomares, & Majaj, 2004) by ensuring that elements were
displayed beyond the critical spacing of crowding of about one-half
of viewing eccentricity (Bouma, 1970).

The purpose of this paper is to evaluate how stimulus visibility
affects enumeration accuracy and variability, and how indepen-
dent detectability of individual elements might explain the data.
Here, we used the rules of probability summation to characterize
feature detection, against which enumeration functions can be
compared (Schlosberg, 1948). In particular, we assessed how lumi-
nance contrast affected subitizing capacity, an empirical disconti-
nuity between small and large numbers in enumeration functions.

1.1. Accuracy of detection probability

The logic behind the probability model in accuracy data is as
follows: enumeration can be described as the simultaneous detec-
tion of multiple items because the observer is required to precisely
detect how many elements are present. This model simply asks,
“What is the probability of detecting n elements given that n ele-
ments were presented”, p (detect n elements|n elements presented)?
If probability governs enumeration, then the probability of detect-
ing the exact number of gratings decreases exponentially as the
number of items is increased, p = p} (Fig. 2b), where p; is the prob-
ability of detecting a single grating and n is the number of pre-
sented gratings. According to this model, the probability of
precisely detecting multiple elements can be predicted from the
probability of detecting a single element.

If enumeration adheres to this probability model, it would
undermine the notion that subitizing and counting are two sepa-
rate processes, and would instead reflect two distinct levels within
a continuum of difficulty (Balakrishnan & Ashby, 1991, 1992). It
would further suggest that the computation underlying enumera-
tion is a single mechanism based on the probability of detecting a
single element. Fig. 2b shows that the functions predicted by prob-
ability change shape dramatically. For low contrast gratings, the
enumeration function is concave, and accuracy drops almost line-
arly for small numbers then plateaus for large numbers. For high
contrast gratings, the enumeration function is convex, and accu-
racy remains high for small numbers then drops quickly for large
numbers. In this case, data generated by an underlying exponential
process where p; is high might look suspiciously like subitizing, as
the function for low numerosities would be near ceiling.

1.2. Response variance of detection probability

Variability is another feature of our data that can diagnose the
role of probability summation in visual enumeration. If enumera-
tion is governed by independent detection of individual elements
then the distribution of responses for a given number should fol-

low the rules of probability. That is, as more elements are pre-
sented, response variability decreases as a function of the square
root of the number of presented elements (Cordes, Gelman, Galli-
stel, & Whalen, 2001; Gallistel & Gelman, 2000). If this were the
case, then the coefficient of variation (standard deviation/mean re-
sponse) plotted as a function of mean response would have a log-
log slope of —0.5 following the properties of a binomial distribu-
tion (see Appendix B). Alternatively enumeration may follow a sca-
lar pattern - standard deviation would be proportional to element
number such that the coefficient of variation as a function of mean
response would be flat, a slope of 0. Many studies have found that
coefficient of variation is constant as a function of number for
numerosities greater than the subitizing capacity (e.g., Nieder &
Merten, 2007). The coefficient of variation is a measure identical
to a Weber fraction, in which precision for performing a task is nor-
malized relative to the magnitude of a stimulus parameter - num-
ber of elements in this case (see Burr et al., 2010; Feigenson,
Dehaene, & Spelke, 2004; Nieder & Merten, 2007).

2. Methods
2.1. Participants

Eighteen observers participated in this experiment (18-27 years
old). All had normal or corrected to normal vision. Observers were
given course credit or monetary compensation for participation.

2.2. Stimuli, apparatus and procedure

This experiment was executed on an Apple iMac G3 computer
attached to a 19” NEC monitor using MATLAB software with the
Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997).
The gray background luminance was ~18 cd/m?, the middle of
the monitor range. To ensure equal visibility across targets, we
controlled viewing eccentricity and inter-target separation. Targets
were presented at 12 possible evenly spaced locations each 5° from
fixation. The minimum distance between targets was 2.6°, target-
center to target-center.

The targets were Gabor patches (i.e. black and white patterns
with a sinusoidal luminance profile; Fig. 1) that were randomly ori-
ented 0°,45°,90° or 135°. The Gabor patches had a spatial frequency
of 1 c/deg. and had a width of 0.52°, which is the 1/e radius of the cir-
cularly symmetric Gaussian envelope of the grating. There were five
experimental blocks corresponding to five Michelson contrasts
[(Lmax — Lmin)/(Lmax * Lmin)]: 0.12, 0.18, 0.25, 0.50 and 0.96, where
L = Luminance values. Each experimental block had 120 trials. Be-
fore the experimental blocks, observers performed 10 practice trials.

Observers fixated on a 0.15° black square at the center of the
screen, which was displayed for the entire trial. The stimuli were
presented for 50 ms and viewed binocularly. Observers used a chin
rest and sat 60 cm away from the screen. Observers enumerated
how many gratings were presented on the screen. For each trial,
the number of elements was randomly chosen. There were 10 pos-
sible answers: 0, 1, 2, 3,4, 5, 6, 7, 8 or 9 gratings, which were typed
on the keyboard. Correct answers were rewarded with a short beep.
Because of a response bias in which observers disproportionately
choose ordinal extremes, only data for 1-8 gratings were analyzed.

3. Results and discussion

In this study, accuracy and variance of enumeration were evalu-
ated at different contrasts to assess the role of element visibility in
enumeration. It specifically tested the possibility that enumeration
performance can be predicted from probability summation of
detecting independent elements (see Schlosberg, 1948). In the fol-
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Fig. 1. Example of stimuli. Targets were sinusoidal Gabor patches that were
independently oriented 0, 45, 90 or 135 deg. They were presented at 5 deg viewing
eccentricity along an imaginary circle for 50 ms. Observers enumerated how many
gratings were presented from 0 to 9.

lowing sections, the data show that enumeration does not com-
pletely follow probability summation. While enumeration variabil-
ity is modified by contrast, subitizing capacity is independent of
contrast. These results are consistent with the idea that visual enu-
meration involves two processes: component detection and compo-
nent integration, which were differentially affected by component
visibility.

3.1. Enumeration accuracy and contrast

We first analyzed how contrast affected enumeration accuracy,
and compared it to a probability summation model. We also tested
whether discontinuity between small and large numbers, or subi-
tizing capacity, is preserved across contrast. We plotted proportion
correct as a function of number for each contrast (Fig. 2a) for 1-8
gratings. Following the method and logic of Green and Bavelier
(2006) we estimated subitizing capacity by fitting our data with
bilinear functions, with the exception of the lowest contrast used.
The first line was set to have a near zero slope, while the second
line was set to have a steeper slope. The best bilinear function
was found by minimizing the least square error. The intersection
between the two functions was taken to be the subitizing capacity
(Green & Bavelier, 2006),

We found that subitizing capacity is independent of contrast
over a fivefold range of contrasts from 0.96 to 0.18, while maxi-
mum proportion correct (i.e., the accuracy at the presentation of
1 grating) changes with contrast. These results suggest that enu-
meration does not follow the rules of probability based on detect-
ing a single grating (Fig. 2b). Subitizing capacities were 3.71, 3.82,
3.45 and 3.29 at 0.96, 0.50, 0.25 and 0.18 contrast, respectively
(Fig. 3a; mean = 3.57 gratings). Watson, Maylor, Allen, and Bruce
(2007) found a similar result in a reaction time study in which they
varied color similarity between to-be-enumerated target stimuli
and to-be-ignored distractor stimuli.

We also carried out an 8 (number) x 5 (contrast) repeated mea-
sures ANOVA, that confirmed what is evident in Fig. 2a. We found
that proportion correct decreased with decreasing stimulus con-
trast, F(4,68) =110.82; p < 0.0001, MSe = 0.106, We also found that
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Fig. 2. (a) Actual data. Proportions correct as a function of grating number were
better fitted by bilinear functions, although p; in a and b were identical. (b)
Probability model. Proportions correct as function of grating number predicted by a
simple detection model, p}, where p; is the probability of seeing 1 grating when 1
grating was presented and n is the number of gratings presented. (¢ and d) Data as
psychometric functions. Proportion correct as a function of contrast for actual and
model data. Gray horizontal line indicates 70% correct from which contrast
thresholds were derived (see Fig. 3b). N = 18, error bar + SEM.
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Fig. 3. (a) Subitizing capacity as a function of contrast is between 3 and 4 items. (b).
Threshold contrast from psychometric functions of real data also shows a subitizing
capacity between 3 and 4 items. Thresholds were taken at 70% correct from
psychometric functions seen in Fig. 2c and d.

proportion correct decreased with increasing target number,
F(7,119)=64.58; p <0.0001; MSe = 0.033, Finally, the interaction
between contrast and target number was also significant,
F(28,476)=6.87; p<0.0001, MSe = 0.020, suggesting that the ef-
fect of contrast varied across target number. We conducted simple
planned comparisons of proportion correct at each number to the
proportion correct at 1 grating. Across all contrasts, we found that
proportions correct at 2 and 3 gratings were not significantly dif-
ferent from the proportion correct at 1 grating (p > 0.05), while
proportions correct at 5, 6, 7 and 8 patches were significantly dif-
ferent (p < 0.05). Proportions correct at four gratings were signifi-
cantly different from the proportion correct at one grating at
0.96, 0.18 and 0.12 contrasts (p < 0.05). These results are consistent
with the notion that subitizing, the precise enumeration of <3-4
items, is distinct from counting.

Our data differ somewhat from those of Hunter and Sigler
(1940) in that for low luminance dots, enumeration accuracy as a
function of element numerosity seems to be better predicted by
the probability model (see Schlosberg, 1948). Moreover, their data
do not have a constant subitizing capacity of 3-4 items as indexed
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by this function. This distinction is likely due to the difference in
stimulus parameters between these studies such as viewing eccen-
tricity and luminance.

Psychometric functions for enumeration were evaluated by rep-
lotting the data as proportion correct as a function of contrast for
every number of grating presented (Fig. 2c and d) and deriving
threshold contrasts for each number (Fig. 3b). Thresholds were
determined by taking the contrast that corresponds to 70% correct
(gray line, Fig. 2c and d). Threshold contrasts were flat until 3-4
items and increase thereafter. These data suggest that similar con-
trasts were required to enumerate 1, 2, 3 or 4 items. Thus, both
accuracy (Fig. 3a) and threshold data (Fig. 3b) were consistent with
the existence of a subitizing capacity.

Notably, recent evidence from studies of the attentional blink
(Egeth et al., 2008; Olivers & Watson, 2008), divided attention
(Burr et al., 2010) and inattentional blindness (Railo et al., 2008)
shows that attentional resources limit subitizing capacity. The cur-
rent data shows that subitizing capacity is not limited by stimulus
visibility. Together, these results suggest that subitizing capacity is
not affected by the general difficulty of the task. This finding is con-
sistent with the classic distinction between data and resource lim-
its (Norman & Bobrow, 1975), in which the effect of attention is
best construed as a resource limit, and the effect of contrast as a
data limit on visual enumeration.

3.2. Enumeration variability and contrast

To see how enumeration precision and variability changes with
contrast, we also evaluated the mean and standard deviation of the
responses as a function of number of dots at each contrast for each
observer. Fig. 4 represents these data for decreasing element con-
trast from left to right. Mean responses as a function of number
(Fig. 4, first row) generally followed a unit slope for high contrast
elements but deviated from unity for lower contrast elements.
Slopes were 0.93, 0.96, 0.84, 0.82 and 0.51 at 0.96, 0.50, 0.25,
0.18 and 0.12 contrasts, respectively (Fig. 4a-e). These data show
that observers underestimated numerosities as contrast decreased.
However observers tended to overestimate the number of ele-
ments when only 1 element was presented.

Standard deviations of the responses were calculated for each
observer and the average standard deviation was plotted against
the number of gratings (Fig. 4, second row). For high contrast stim-
uli (0.96 and 0.50) variability decreases up to a numerosity of
about 2 or 3, and then increases for larger numerosities. For lower
contrast levels there is a slight increase in standard deviation with
increasing numerosity.

The ratio of the standard deviation and mean of the responses,
the coefficient of variation, is often computed in enumeration stud-
ies to determine whether variability scales with the represented
numerosity (Cordes et al., 2001). If this function has a slope of zero,
then it would mean that response variability scales with the num-
ber of items (Appendix A). If this function has a log-log slope of
—0.5, then it would mean that response variability improves with
the number of items, according to the statistical prediction that
variance decreases as a square root of number (Appendix B). Except
for enumeration at the highest contrast (Fig. third row, first col-
umn), coefficient of variance plotted against the number of grat-
ings resulted in negative log-log slopes (between -0.26 and
—0.59, Fig. 4, third row). This would suggest that variance scales
with number at high contrast (at 0.96), but decreases with number
at lower contrasts.

While the variation coefficient function is plotted on log-log
coordinates to determine slopes that correspond to a specific
hypothesis (see Cordes et al., 2001), many enumeration studies
have also used linear-linear coordinates (see (Revkin et al., 2008;
Vetter, Butterworth, & Bahrami, 2008). Notably on linear-linear

coordinates (Fig. 4, fourth row), these functions displayed disconti-
nuities between the subitizing and counting range across all con-
trasts except at 0.12 contrast, which planned polynomial
contrasts verified (p-values <0.05). The data from this analysis
are parallel to the accuracy data described earlier (Fig. 2a).

We also plotted the histogram of responses regardless of the ac-
tual number of gratings presented (Fig. 4, fifth row). The gray bars
represent the frequency of the actual element number, and the
black bars represent the frequency of the responses. At high con-
trasts, the histograms of the responses were similar to the histo-
gram of the actual number of gratings - consistent with a
uniform distribution (Fig. 4, fifth row, first column). However as
visibility decreased, the responses followed a non-uniform distri-
bution with a mode at 2 or 3 items (Fig. 4, fifth row, fourth and fifth
column). The means of the response distributions were 4.42, 4.33,
4.33, 3.63 and 2.77 at 0.96, 0.50, 0.25, 0.18 and 0.12 contrasts,
respectively. These response frequency data show that while re-
sponses trended to lower numerosities as element visibility de-
creased, the central tendencies of those responses hovered near
the veridical mean of the presented stimuli, which was 4.5
elements.

3.3. Enumeration and detection

It is intriguing that enumeration accuracy does not follow the
rules of probability because the task of simple detection does. In
simple detection, the observer is asked to detect the presence or
absence of elements, p (detect at least 1 element|n elements pre-
sented). Elegant studies of gratings have shown that grating detec-
tion is mediated by the parallel activation of independent channels
tuned to the characteristics of the grating signal such as spatial fre-
quency (Campbell, 1980; Campbell & Robson, 1968). These studies
show that simple detection is governed by the summation of each
channel’s independent probability of detecting the grating (Gra-
ham, 1989). Robson and Graham (1981) found that probability
summation reliably depicts improved contrast sensitivities for
detecting multiple gratings, particularly in the peripheral visual
field. In this context, probability summation means that the more
items are presented in a display, the more likely that at least one
item is detected. The fundamental principle behind probability
summation is that the independent detectabilities of individual
elements predict the simultaneous detectability of the whole stim-
ulus. Surprisingly, enumeration — a seemingly slight variation of a
detection task - does not completely follow this principle.

However, enumeration does partially follow probability sum-
mation. The near log-log slope of —0.5 in the coefficient of varia-
tion in the responses suggests that probability summation is
playing a role in enumeration. These data show that the variability
of the responses decreased roughly as the square root of the num-
ber gratings. This characteristic in the enumeration functions sup-
ports the notion that increasing the number of elements increases
overall information available to the observer such that estimation
of numerosity improves, in the sense of becoming more precise
(i.e., more tightly clustered) with growing numerosity. (For more
details, please see Appendix B.)

These data are actually consistent with the notion that there are
two core number systems: an approximate number system to rep-
resent numerical magnitudes and a precise number system to rep-
resent discrete small number of elements (Dehaene, 2009;
Feigenson et al., 2004). Here, probability summation is related to
the approximate number system, whereas subitizing capacity
characterizes the precise number system. On the one hand as lumi-
nance contrast decreased, enumeration functions become more in
line with numerical magnitude representation. Lower contrast ele-
ments showed no discontinuity in the coefficient of variation be-
tween 3 and 4 items in log-log coordinates (Fig. 4, third row).
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Fig. 4. Characteristics of the enumeration responses from high contrast to low contrast (left to right). (First Row) Mean responses as a function of the number of gratings
deviate from a unit slope as gratings become less visible. (Second Row) Standard deviation of responses flattens out against number of gratings, and increases with less
contrast. (Third Row) Coefficient of variation functions (standard deviation/mean response) change in slope as contrast decrease in log-log coordinates. (Fourth Row)
Coefficient of variation functions in linear-linear coordinates. (Fifth Row) Response histograms (black bars) become less uniform at low contrasts.

Probability summation was most clearly demonstrated in the
mean responses at 0.12 contrast (Fig. 4, first row, fifth column),
where responses systematically increased with the number of grat-
ings, albeit imprecisely. At this low contrast level, the observers
were able to determine which trials had relatively more or fewer
elements without knowing the exact number of elements. On the
other hand, subitizing capacity was generally unaffected by lumi-
nance contrast. Enumeration across multiple contrasts shows dis-
continuities in the accuracy functions (and variation coefficient
functions in linear-linear coordinates). These data suggest that a
contrast-independent subitizing capacity operates after element
detection, presumably after the process of probability summation
of independently detected elements.

3.4. Enumeration and identification

Many aspects of the current data cannot be explained by the
simple application of probability theory. This suggests that enu-
meration involves some process beyond the detection of individual
elements. If the computation underlying enumeration is unlike
that of simple detection, then what process does it involve? We
speculate that enumeration, particularly for small numbers, is like
pattern identification, which involves integration of components
after detection has occurred. Although identification typically re-
quires integration of contiguous components within an object
while enumeration requires integration of spatially separate ele-
ments, these tasks share many characteristics such as (1) a similar
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cortical network, (2) the effect of grouping and spatial geometry,
(3) the independence of contrast, and (4) the presence of capacity
limits.

The task of identification requires that multiple components are
detected and integrated into a recognizable object (Pelli, Burns,
Farell, & Moore-Page, 2006; Pelli et al., 2004). In identification,
observers track the relative positions of components so that object
shapes are correctly identified. For example, the lower-case letters,
b, d, p and q all have the same components that are in different rel-
ative positions. In enumeration, perhaps it is also necessary to
implicitly encode the relative position of elements so that the ob-
server can count every item once. Findings from fMRI has shown
that both enumeration of dots and discrimination of inferred shape
from dots present activations in the posterior parietal cortex (e.g.,
Ritzl et al., 2003), suggesting that enumeration and shape forma-
tion may share a cortical locus.

Enumeration has been linked to shape and structure of element
arrays. Mandler and Shebo (1982) proposed that quick enumera-
tion of items is shape formation, in which observers treat the items
as canonical patterns such as polygons. Enumeration of elements
arranged in well-learned canonical patterns has been found to be
faster than enumeration of elements forming irregular patterns
(Wender & Rothkegel, 2000). Likewise, Logan and Zbrodoff
(2003) also proposed that pattern similarity might account for
the subitizing and counting dichotomy. Although the difference
between subitizing and counting exists in studies in which polygon
formation was prevented by aligning targets in a row (Atkinson
et al., 1976; Parth & Rentschler, 1984) shape formation may be re-
lated to perception of pattern size, length or regularity as well as
perception of polygon characteristics. Burgess and Barlow (1983)
found that increasing regularity in the spatial arrangement of dots
in a display decreased observer variance in number discrimination
while changing regularity in average density and average lumi-
nance had little effect. Spatial irregularities in dot arrays have been
reported to cause underestimation of numerosity (Ginsburg, 1976,
1978, 1980; Ginsburg & Goldstein, 1987; see also Taves, 1941). It
has been proposed that arrays with elements that form sub-clus-
ters tended to be perceived as less numerous, such as in the soli-
taire illusion (Frith & Frith, 1972) and in randomly distributed
dot arrays (e.g., Ginsburg, 1980). More recently, arrays with ele-
ments connected by lines have been found to be underestimated
as well (Franconeri, Bemis, & Alvarez, 2009; He, Zhang, Zhou, &
Chen, 2009). Together, these data suggest that Gestalt grouping
cues interacts with enumeration, and is consistent with an enu-
meration model that segments the output of detected items (Deh-
aene & Changeux, 1993).

The current data show that subitizing capacity is generally
independent of contrast suggesting that enumeration involves
component integration, a process distinct from independent detec-
tion of individual elements. The recognition of patterns composed
of random dot stimuli has been found to be generally contrast
invariant as well. These have been demonstrated with stimuli that
require spatiotemporal integration of individual dots to detect
coherent motion (Burr & Santoro, 2001) or spatial integration of
dot pairs to detect Glass patterns (Palomares, Pettet, Vildavski,
Hou, & Norcia, 2010). Neurons in primary visual cortex (V1) detect
simple local features whereas neurons in extrastriate cortex are
tuned to more complex stimuli from the integrated output of V1
neurons. Neuroimaging studies show that responses in V1 is mod-
ulated by contrast whereas responses in extrastriate cortex pri-
marily are not (e.g., Tootell et al., 1998.) Thus functions invariant
to contrast are likely mediated by mechanisms after the feature
detection stage that occurs in V1.

More critically, both enumeration and identification have
capacity limits. In enumeration, the subitizing capacity of 3-4
items (Fig. 2b and c) marks the number of objects that can be pre-

cisely and quickly enumerated. In identification, the application of
the probability summation model to letter identification allows the
estimation of the number of components detected at the identifica-
tion threshold (see Appendix B of Pelli et al., 2006). Pelli et al.
(2006) found that observers detected 7 +2 components at the
identification threshold, across the alphabets tested. They also
found that efficiencies for detecting and identifying letters dropped
as a function of perimetric complexity suggesting that letters from
simple alphabets are more recognizable than letters from complex
alphabets. Moreover for identifying letters made up of gratings,
efficiency' drops in inverse proportion to the number of gratings.
Identifying letters made up of 3-4 gratings had an efficiency of
10%, while identifying letters made up of >4 gratings had 2-6% (Maj-
aj et al., 2000), suggesting that patterns comprised of fewer elements
are better recognized than patterns with many elements. It is not
clear if and how the capacity limits in enumeration and identifica-
tion are directly related, but these limits may represent the Gestalt
idea that simplicity is a “law” of good form (Wertheimer, 1923), such
that simple configurations and objects are more readily perceived as
a whole. Eye movement data also has a discontinuity between the
subitizing and counting range (Watson, Maylor, & Bruce, 2007), with
minimal number of saccades in the subitizing range suggesting par-
allel processing of items.

Interestingly, capacity limits in enumeration have also been
linked to capacity limits in visual working memory (see Cowan,
2001 and subsequent discussions). However, storage in working
memory is tied to Gestalt grouping principles. Objects that were
perceptually grouped have been found to be more likely stored
in working memory (Woodman, Vecera, & Luck, 2003). Perhaps,
objects within the subitizing capacity can be stored more readily
in memory because these objects are more easily grouped, follow-
ing the Gestalt law of simplicity or Pragnanz (Wertheimer, 1923).

3.5. Enumeration beyond vision

It is observable from counting beans (Jevons, 1871) or speckles
on a hen (Butterworth, 2008) and other examples that we have a
visual sense of number (Burr & Ross, 2008; see also Durgin,
2008). In this paper, we discussed how the perception of number
is related to Gestalt principles of integration, which operate after
the detection of independent components. While we focused on
how enumeration in the modality of vision, we also acknowledge
that the concepts of number and numerosity has been studied in
other sensory modalities. Subitizing capacities have been reported
for touch (Riggs et al., 2006) and hearing (Camos & Tillmann, 2008),
modalities that also possess Gestalt grouping concepts (Harrar &
Harris, 2007; Jackendoff and Lerdahl, 2006; Kubovy & Van Valken-
burg, 2001).

4. Conclusion

By parametrically varying luminance contrast in an enumera-
tion task, we found that important characteristics of enumeration
functions were generally independent of contrast: subitizing
capacities were between 3 and 4 items, while the log-log slopes
of variation coefficients were near —0.5. Notably, evidence for a
subitizing capacity (i.e., discontinuity in accuracy) was absent at
the lowest contrast (0.12), whereas evidence of probability sum-
mation was absent (i.e., the slope of the variation coefficient was
near zero) at the highest contrast (0.96). These results are consis-
tent with the dichotomy between the precise and approximate

! Efficiency is the ratio of thresholds between human and ideal observers. Ideal
thresholds are dependent on the probability and covariance of the targets as well as
the amount of visual noise masking the target (Appendix A, Pelli et al., 2006).
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Fig. A1. Scalar variability predictions for theoretical data with k = 0.40. Coefficient
of variation as a function of number has a log-log slope of 0 (dotted line).

number systems such that a subitizing capacity represents the lim-
itation in precise enumeration while probability summation of de-
tected elements represents approximate enumeration. In other
words, the estimated numerosity of an array reflects the visibility
of the individual elements, whereas subitizing does not. We posit
that enumeration is linked to the principles of perceptual grouping
because both involve integration, beyond summation, of detected
componential features.
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Appendix A. Scalar variability model of enumeration

Coefficient of variation is defined as the standard deviation di-
vided by the mean of the response. This is a normalized metric of
enumeration precision (see Cordes et al., 2001) identical to the
concept of Weber fraction (Piazza et al., 2002; Nieder & Merten,
2007). If enumeration precision scales with element number, then
the variation coefficient would be constant (k) as a function of
number (n).

o=kn (A1)
coefficient of variation = k (A2)

In this case, standard deviation increases with element number,
but normalized standard deviations do not. Fig. A1 shows an exam-
ple where k = 0.4.

Appendix B. Binomial variability model of enumeration

The probability model of summation described in the main text
is based on the binomial distribution, a discrete probability distri-
bution of the number of successes that individual elements were
detected. The probability of exact enumeration (p) depends on
the probability of detecting one element (p;) and the number of
elements (n) according to the following relationship p = p} (see
Section 1.1).

The mean and variance of the binomial distribution is also pre-
dicted by the probability of detecting one element (p;) and the
number of elements (n). The mean of the binomial distribution is:

Ll

coefficient of variance

number of gratings

Fig. B1. Binomial variability predictions for theoretical data for p; = 0.97 (solid line)
and p; = 0.19 (dotted line). Coefficient of variation as a function of number has a
log-log slope of —0.5, regardless of the value of p;.

f = np, (B1)
The variance of the binomial distribution is:
o® =np,(1-py) (B2)

Standard deviation is the square root of the variance. Thus the
standard deviation of the binomial distribution is:

g = (npy(1-py))"”* (B3)

Since the coefficient of variation is the standard deviation di-
vided by the mean, the coefficient of variation for a binomial distri-
bution is:

coefficient of variation = ((np,(1 — p;))"?)/np, (B4)
Simplified:
coefficient of variation = ((1 — p,)/np;)"? (B5)

Put in a familiar form:

coefficient of variation = (np,/(1 — p;)) "/ (B6)

Note that the exponent is —1/2 (or —0.5), which corresponds to
the slope in log-log coordinates. Fig. B1 shows examples of coeffi-
cient of variation as a function of element number.

References

Atkinson, J., Campbell, F. W., & Francis, M. R. (1976). The magic number 4 + 0: A new
look at visual numerosity judgements. Perception, 5(3), 327-334.

Balakrishnan, J. D., & Ashby, F. G. (1991). s subitizing a unique numerical ability?
Perception & Psychophysics, 50(6), 555-564.

Balakrishnan, J. D., & Ashby, F. G. (1992). Subitizing: Magical numbers or mere
superstition? Psychological Research, 54(2), 80-90.

Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature,
226(241), 177-178.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436.

Burgess, A., & Barlow, H. B. (1983). The precision of numerosity discrimination in
arrays of random dots. Vision Research, 23(8), 811-820.

Burr, D., Turi, M., & Anobile, G. (2010). Subitizing but not estimation of numerosity
requires attentional resources. Journal of Vision, 10(6), 1-10. doi:10.1167/
10.6.20.

Burr, D., & Ross, J. (2008). A visual sense of number. Current Biology, 18(6), 425-428.

Burr, D. C., & Santoro, L. (2001). Temporal integration of optic flow, measured by
contrast and coherence thresholds. Vision Research, 41(15), 1891-1899.

Butterworth, B. (2008). Numerosity perception: How many speckles on the hen?
Current Biology, 18(9), R388-R389.

Camos, V., & Tillmann, B. (2008). Discontinuity in the enumeration of sequentially
presented auditory and visual stimuli. Cognition, 107(3), 1135-1143.

Campbell, F. W. (1980). The physics of visual perception. Philosophical Transactions
of the Royal Society of London B: Biological Sciences, 290(1038), 5-9.

Campbell, F. W., & Robson, ]. G. (1968). Application of Fourier analysis to the
visibility of gratings. Journal of Physiology, 197(3), 551-566.



M. Palomares, H. Egeth/Vision Research 50 (2010) 2000-2007 2007

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration
of mental storage capacity. Behavioural Brain Sciences, 24(1), 87-114. discussion
114-185.

Cordes, S., Gelman, R., Gallistel, C. R, & Whalen, J. (2001). Variability signatures
distinguish verbal from nonverbal counting for both large and small numbers.
Psychonomic Bulletin & Review, 8(4), 698-707.

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1-42.

Dehaene, S. (2009). Origins of mathematical intuitions: The case of arithmetic.
Annals of the New York Academy of Sciences, 1156, 232-259.

Dehaene, S., & Changeux, ]J. P. (1993). The development of elementary numerical
abilities: A neuronal model. Journal of Cognitive Neuroscience, 5, 390-407.

Durgin, F. H. (2008). Texture density adaptation and visual number revisited.
Current Biology, 18(18), R855-R856. author reply R857-858.

Egeth, H. E. Leonard, C. ], & Palomares, M. (2008). The role of attention in
subitizing: Is the magical number 1? Visual Cognition, 16, 463-473.

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in
Cognitive Science, 8(7), 307-314.

Franconeri, S. L., Bemis, D. K., & Alvarez, G. A. (2009). Number estimation relies on a
set of segmented objects. Cognition, 113(1), 1-13.

Frith, C. D., & Frith, U. (1972). The solitaire illusion: An illusion of numerosity.
Perception and Psychophysics, 11(6), 409-410.

Gallistel, C. R., & Gelman, I. I. (2000). Non-verbal numerical cognition: From reals to
integers. Trends in Cognitive Sciences, 4(2), 59-65.

Ginsburg, N. (1976). Effect of item arrangement on perceived numerosity:
Randomness vs. regularity. Perceptual and Motor Skills, 42(43), 663-668.

Ginsburg, N. (1978). Perceived numerosity, item arrangement, and expectancy. The
American Journal of Psychology, 91(2), 267-273.

Ginsburg, N. (1980). The regular-random numerosity illusion: Rectangular patterns.
The Journal of General Psychology, 103(2d Half), 211-216.

Ginsburg, N., & Goldstein, S. R. (1987). Measurement of visual cluster. The American
Journal of Psychology, 100(2), 193-203.

Graham, N. (1989). Visual pattern analyzers. New York: Oxford University Press.

Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: The
case of action video game players. Cognition, 101(1), 217-245.

Harrar, V., & Harris, L. R. (2007). Multimodal ternus: Visual, tactile, and visuo-tactile
grouping in apparent motion. Perception, 36(10), 1455-1464.

He, L., Zhang, ]., Zhou, T., & Chen, L. (2009). Connectedness affects dot numerosity
judgment: Implications for configural processing. Psychonomic Bulletin &
Review, 16(3), 509-517.

Hunter, W. S., & Sigler, M. (1940). The span of visual discrimination as a function of
time and intensity of stimulation. Journal of Experimental Psychology, 26,160-179.

Jackendoff, R., & Lerdahl, F. (2006). The capacity for music: What is it, and what's
special about it? Cognition, 100(1), 33-72.

Jevons, W. S. (1871). The power of numerical discrimination. Nature, 3, 281-282.

Kaufman, E., Lord, M., Reese, T., & Volkmann, J. (1949). The discrimination of visual
number. American Journal of Psychology, 62, 498-525.

Kubovy, M., & Van Valkenburg, D. (2001). Auditory and visual objects. Cognition,
80(1-2), 97-126.

Logan, G. D., & Zbrodoff, N. ]. (2003). Subitizing and similarity: Toward a pattern-
matching theory of enumeration. Psychonomic Bulletin & Review, 10(3),
676-682.

Majaj, NJ, Raizman, N., Kim, E., Christian, C., Palomares, M., & Pelli, D.G. (2000).
Efficiency and gestalt. Perception, 29 (ECVP abstract supplement).

Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component
processes. Journal of Experimental Psychology General, 111(1), 1-22.

Nieder, A., & Merten, K. (2007). A labeled-line code for small and large numerosities
in the monkey prefrontal cortex. Journal of Neuroscience, 27(22), 5986-5993.

Norman, D.A., & Bobrow, D.G., 1975. On data limited and resource limited processes.
Cognitive Psychology, 7, 44-64.

Olivers, C. N. L., & Watson, D. G. (2008). Subitizing requires attention. Visual
Cognition, 16, 438-463.

Palomares, M., Pettet, M., Vildavski, V., Hou, C., & Norcia, A. (2010). Connecting the
dots: How local structure affects global integration in infants. Journal of
Cognitive Neuroscience, 22(7), 1557-1569.

Parth, P.,, & Rentschler, I. (1984). Numerosity judgments in peripheral vision:
Limitations of the cortical magnification hypothesis. Behavioural Brain Research,
11(3), 241-248.

Pelli D. G. (1997). The videotoolbox software for visual psychophysics:
Transforming numbers into movies. Spatial Vision, 10(4), 437-442.

Pelli, D. G., Burns, C. W., Farell, B., & Moore-Page, D. C. (2006). Feature detection and
letter identification. Vision Research, 46(28), 4646-4674.

Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike ordinary
masking: Distinguishing feature integration from detection. Journal of Vision,
4(12), 1136-1169.

Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are subitizing and
counting implemented as separate or functionally overlapping processes?
Neuroimage, 15(2), 435-446.

Pylyshyn, Z. (1994). Some primitive mechanisms of spatial attention. Cognition,
50(1-3), 363-384.

Railo, H., Koivisto, M., Revonsuo, A., & Hannula, M. M. (2008). The role of attention in
subitizing. Cognition, 107(1), 82-104.

Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing
reflect numerical estimation? Psychological Science, 19(6), 607-614.

Riggs, K. ], Ferrand, L., Lancelin, D., Fryziel, L., Dumur, G., & Simpson, A. (2006).
Subitizing in tactile perception. Psychological Science, 17(4), 271-272.

Ritzl, A., Marshall, ]. C., Weiss, P. H., Zafiris, O., Shah, N. ], Zilles, K., et al. (2003).
Functional anatomy and differential time courses of neural processing for
explicit, inferred, and illusory contours. An event-related fMRI study.
Neuroimage, 19(4), 1567-1577.

Robson, J. G., & Graham, N. (1981). Probability summation and regional variation in
contrast sensitivity across the visual field. Vision Research, 21(3), 409-418.
Sathian, K., Simon, T. ], Peterson, S., Patel, G. A., Hoffman, J. M., & Grafton, S. T.
(1999). Neural evidence linking visual object enumeration and attention.

Journal of Cognitive Neuroscience, 11(1), 36-51.

Schlosberg, H. (1948). A probability formulation of the hunter-sigler effect. Journal
of Experimental Psychology, 38(2), 155-167.

Taves, E. H. (1941). Two mechanisms for the detection of visual numerousness.
Archives of Psychology, 37, 1-47.

Tootell, R., Hadjikhani, N., Vanduffel, W., Liu, A. K., Mendola, ]. D., Sereno, M. L, et al.
(1998). Functional analysis of primary visual cortex (V1) in humans. Proceedings
of the National Academy of Science, 95(3), 811-817.

Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies can show us
about spatial attention: Evidence for limited capacity preattentive processing.
Journal of Experimental Psychology: Human Perception & Performance, 19(2),
331-351.

Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated
differently? A limited-capacity preattentive stage in vision. Psychological
Review, 101(1), 80-102.

Van Oeffelen & Vos (1982). A probabilistic model for the discrimination of visual
number. Perception & Psychophysics, 32(2), 163-170.

Vetter, P., Butterworth, B., & Bahrami, B. (2008). Modulating attentional load affects
numerosity estimation: Evidence against a pre-attentive subitizing mechanism.
PLoS ONE, 3(9), e3269.

Watson, D. G., Maylor, E. A., & Bruce, L. A. (2007). The role of eye movements in
subitizing and counting. Journal of Experimental Psychology: Human Perception
and Performance, 33(6), 1389-1399.

Watson, D. G., Maylor, E. A, Allen, G. E. ], & Bruce, L. A. M. (2007). Early visual
tagging: Effects of target-distractor similarity and old age on search,
subitization and counting. Journal of Experimental Psychology: Human
Perception and Performance, 33(3), 549-569.

Wender, K. F., & Rothkegel, R. (2000). Subitizing and its subprocesses. Psychological
Research, 64(2), 81-92.

Wertheimer, M. (1923). Laws of organization in perceptual forms. First published as
Untersuchungen zur Lehre von der Gestalt II. Psycologische Forschung, 4, 301-
350 [Translation published in Ellis, W. (1938). A source book of Gestalt
psychology (pp. 71-88). London: Routledge & Kegan Paul].

Woodman, G. F., Vecera, S. P., & Luck, S. ]. (2003). Perceptual organization influences
visual working memory. Psychonomic Bulletin & Review, 10(1), 80-87.



