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Abstract: There is converging evidence that people rapidly and automatically encode affective dimen-
sions of objects, events, and environments that they encounter in the normal course of their daily rou-
tines. An important research question is whether affective representations differ with sensory
modality. This research examined the nature of the dependency of affect and sensory modality at a
whole-brain level of analysis in an incidental affective processing paradigm. Participants were pre-
sented with picture and sound stimuli that differed in positive or negative valence in an event-related
functional magnetic resonance imaging experiment. Global statistical tests, applied at a level of the
individual, demonstrated significant sensitivity to valence within modality, but not valence across
modalities. Modality-general and modality-specific valence hypotheses predict distinctly different mul-
tidimensional patterns of the stimulus conditions. Examination of lower dimensional representation of
the data demonstrated separable dimensions for valence processing within each modality. These
results provide support for modality-specific valence processing in an incidental affective processing
paradigm at a whole-brain level of analysis. Future research should further investigate how stimulus-
specific emotional decoding may be mediated by the physical properties of the stimuli. Hum Brain
Mapp 35:3558–3568, 2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

The theory of core affect posits that the neural system
processes affective aspects of stimuli encountered by the
organism quickly and automatically, resulting in a unified
affective state described along the dimensions of valence
and arousal (Russell, 2003; Russell and Barrett, 1999). Stud-
ies of core affect have typically presented visual or audi-
tory stimuli scaled for affective content to participants,
who may then evaluate them along affective dimensions
or may process them incidentally (e.g., Lang et al., 1998).
Because core affect is typically studied as a reaction to
stimulus presentation, researchers have posited that there
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may be two functional systems involved in processing the
affective content of the stimuli (Barrett and Bliss-Moreau,
2009). The first system is conceived as a sensory-integration
network that is modality-specific, so that visual stimuli are
processed in a different network than auditory stimuli.
Thus, affective processing within the sensory-integration
network would likely be modality-specific, with different
neural encoding of affective sounds than of affective pic-
tures. A second functional subsystem for core affect process-
ing is the visceromotor network (Barrett and Bliss-Moreau,
2009). In this network an affective response is generated to
the stimulus, with this response likely to be modality-
general so that negatively valenced sounds may be proc-
essed in a similar way as negatively valenced pictures.

The study presented here explores how modality-specific
and modality-general encoding may be distinguished using
functional magnetic resonance imaging (fMRI) methodol-
ogy in three different ways. All three approaches are based
on a multivariate pattern analysis framework in which dis-
tributed patterns of activation across multiple voxels con-
tribute to the representation of the affective state. The first
approach is based on decoding affective states. If modality-
general processing is occurring, then one would expect that
not only should affect be decoded within a given modality
but also that cross-modality decoding of affect should
occur. If only modality-specific processing of affect is
occurring, then decoding should be successful within
modality, but not across modalities.1

The second approach is an analysis of the variance asso-
ciated with different contrasts applied to each voxel. If
modality-general affective processing is occurring, then
one would expect the variance of a global affective con-
trast that ignores modality differences to be significantly
greater than chance. If modality-specific processing domi-
nates, then modality-specific affective contrasts should be
significant and modality-general contrasts should not.

The third approach does not utilize significance testing,
but rather visualization methods. Possible representations
that might arise when modeling similarity of neural
responses to positively and negatively valenced visual or
auditory stimuli are illustrated in Figure 1. Panel A por-
trays the modality-general valence hypothesis, with princi-
pal components representing modality and valence,
respectively, and stimulus locations indicating a common
valence component that functions in the same way for
both modalities. Panel B portrays a three-component rep-
resentation of how these stimuli might be affectively repre-
sented if valence is encoded in different ways for pictures
and sounds. In the three-component representation, it is
clear that valence for pictures does not predict valence for
sounds, and vice versa, with modality-specific components
for coding picture valence and sound valence being inde-
pendent of one another. The representations of Figure 1

suggest that applying multidimensional scaling related
methods of voxel similarity patterns (Baucom et al., 2012;
Edelman et al., 1998; Kriegeskorte et al., 2008a, 2008b;
Shinkareva et al., 2013) across modality-by-valence condi-
tions may be useful in examining the nature of the
dependency of affect and modality.

Following the logic outlined above, we utilized an experi-
mental design in which we manipulated stimuli along two
dimensions: modality (visual or auditory) and valence (pos-
itive or negative). The multivariate patterns of brain activity
associated with experimental conditions have been previ-
ously shown to contain information that is not available in
activation-based analyses (e.g., Jimura and Poldrack, 2012)
and have been successfully analyzed in the study of affect
(Baucom et al., 2012; Ethofer et al., 2009; Kassam et al.,
2013; Kotz et al., 2013; Peelen et al., 2010; Pessoa and Pad-
mala, 2007; Said et al., 2010; Sitaram et al., 2011; Yuen et al.,
2012). These patterns can be compared across conditions to
investigate the representational similarity of affective states
(Shinkareva et al., 2013). Our aim was to test for modality-
specific and modality-general processing in an incidental
presentation paradigm in which participants simply viewed
or listened to the presented stimuli.

METHODS

Participants

Eight (four female) volunteer adults [mean age 27.75
years, standard deviation (SD) 5 6.41] from the University

Figure 1.

Theory-based representations of the affective space for positive

and negative valence generated by pictures and sounds. (A)

Modality-general valence in a two-dimensional space. (B)

Modality-specific valence in a three-dimensional space. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

1Lack of cross-modal decoding, however, does not in itself demon-
strate modality-specific processing.
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of South Carolina community with normal or corrected to
normal vision participated and gave written informed con-
sent in accordance with the Institutional Review Board at
the University of South Carolina.

Materials

Participants viewed affect-eliciting pairs of pictures and
listened to affect-eliciting pairs of sounds that reflected
positive or negative valence. A series of color photographs
(e.g., baby smiling) and a series of complex (vocal and
nonvocal) naturally occurring sounds (e.g., baby cooing)
were sampled from the International Affective Picture Sys-
tem (IAPS) and International Affective Digitized Sounds
(IADS) databases, respectively (Bradley and Lang, 2000;
Lang et al., 2008), provided by the National Institute of
Mental Health Center for the Study of Emotion and Atten-
tion. Sounds and pictures were selected based on normed
valence ratings and balanced across the two valence cate-
gories on arousal ratings (Table I). Note that the positive
pictures differ strongly from the negative pictures in mean
valence ratings (MPositive 5 7.37 and MNegative 5 2.24) and
that the positive sounds differ strongly from the negative
sounds in mean valence ratings (MPositive 5 7.25 and MNe-

gative 5 2.34). Pictures and sounds were equated on the
presence of people and human voices across the two
valence categories. On each trial a pair of sounds or pic-
tures was presented so that a given trial did not have a
single semantic identity.

We did not attempt to equate the selected stimuli on
low-level parameters, although we tested for significant
differences in low-level parameters of picture and sound
stimuli. First, we measured mean saturation and bright-
ness of pictures using MATLAB (R2010b, MathWorks) and
found no significant difference in mean saturation between
positive and negative pictures, whereas mean brightness
was significantly different between the two conditions,

t(22) 5 2.510, P < 0.05, with positive pictures brighter
than negative pictures (MPositive 5 0.601 and MNegative 5

0.470). This relationship is representative of the database
itself (Lakens et al., 2013) based on an investigation of all
IAPS and Geneva Affective Picture Database (Dan-Glauser
and Scherer, 2011) pictures. Baucom et al. (2012) normal-
ized saturation and intensity (brightness) of IAPS picture
stimuli and were still able to identify affective values of
pictures from fMRI data. Thus brain differences associated
with valence appear to be driven by activation differences
beyond those in low level vision. We also measured acous-
tical features of sound stimuli including mean frequency
and amplitude between positive and negative sounds
using Adobe Audition CS6. Positive sets did not differ
from the negative sets in mean frequency (Hz), and mean
amplitude (dB), P > 0.05. We note that while these stimu-
lus sets do not differ significantly on a number of lower
level features, this is not an exhaustive search of all physi-
cal characteristics of the stimuli.

Experimental Paradigm

fMRI was used to measure brain activity while partici-
pants viewed pairs of color photographs and listened to
pairs of sounds designed to elicit affective states with
either positive or negative valence. All stimuli were pre-
sented using E-prime software (Psychology Software
Tools, Sharpsburg, PA). All picture stimuli were 640 3 480
pixels and were presented in 32-bit color. Sound stimuli
were delivered via Serene Sound Audio System (Reso-
nance Technology, Northridge, CA). Each pair of picture
or sound stimuli was presented for 4 s, followed by an 8 s
fixation. In each case, two stimuli of the same valence and
modality were presented back to back for 2 s to comprise
the 4 s presentation (Fig. 2). There were four presentations
of 24 unique exemplars, 12 picture pairs and 12 sound
pairs, in the experiment. Participants were instructed to

TABLE I. Picture and sound stimulus pairings

Stimulus sets

Pictures Sounds

Positive valence Negative valence Positive valence Negative valence

Identification numbers 8170, 8180 9250, 9050 717, 311 260, 292
8190, 5626 9921, 6821 716, 367 711, 626
5470, 8034 8485, 9252 351, 813 288, 290
8499, 8490 2811, 3500 364, 226 424, 625
5629, 8030 9635, 6312 352, 363 276, 286
8080, 8200 9600, 9410 817, 815 714, 719

Valence M 5 7.37 M 5 2.24 M 5 7.25 M 5 2.34
SD 5 0.38 SD 5 0.34 SD 5 0.77 SD 5 0.63

Arousal M 5 6.42 M 5 6.60 M 5 6.39 M 5 7.25
SD 5 0.37 SD 5 0.25 SD 5 0.63 SD 5 0.47

Note: Statistics summarize nine-point IAPS and IADS ratings of pictures and sounds in each set.
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focus on the fixation cross in the center of the screen
throughout the experiment. The presentation sequence
was block randomized with the restriction that no affect-
by-modality condition was presented twice in a row.

After the scanner session, participants completed a
behavioral task in which each of the 12 picture pairs and
12 sound pairs was presented 10 times in random order.
After each presentation, participants rated on a 9-point
scale their affective reaction to the stimuli on one of the
following dimensions: angry, anxious, calm, disgusted,
excited, happy, negative, positive, relaxed and sad. Corre-
lations of the pattern of ratings across the 24 stimuli were
then used to scale affective reactions to the stimuli.

fMRI Procedure

MRI data were acquired on a Siemens Magnetom Trio
3.0T whole-body scanner (Siemens, Erlangen, Germany) at
the McCausland Center for Brain Imaging at the Univer-
sity of South Carolina. The functional images were
acquired using a single-shot echo-planar imaging pulse
sequence [repetition time (TR) 5 2,200 ms, echo time (TE)
5 35 ms, and 90� flip angle] with a 12-channel head coil.
Thirty-six 3-mm thick oblique-axial slices were imaged in
interleaved scanning order with no gap. The acquisition
matrix was 64 3 64 with 3 mm 3 3 mm 3 3 mm voxels.
Functional data was acquired using slow event-related
design in a single session. High-resolution whole-brain
anatomical images were acquired using a standard T1-
weighted 3D MP-RAGE protocol (TR 5 2,250 ms, TE 5

4.18 ms, field of view 5 256 mm, flip angle5 9�, and voxel
size51 mm 3 1 mm 3 1 mm) to facilitate normalization
of the functional data.

fMRI Data Processing and Analysis

Data processing and statistical analyses were performed in
MATLAB environment using standard procedures in Statisti-
cal Parametric Mapping software (SPM 8; Wellcome Depart-
ment of Cognitive Neurology, London, UK). The data were
corrected for motion and linear trend. Structural data were
segmented into white and gray matter to facilitate the nor-
malization. Functional and anatomical images were coregis-

tered and spatially normalized into the standard Montreal
Neurological Institute space based on T1-derived normaliza-
tion parameters. Before statistical tests and lower dimen-
sional representation analyses the data were smoothed with
an 8 mm full width at half maximum Gaussian kernel.

A general linear model (GLM) was fit at each voxel by
convolving the canonical hemodynamic response function
with onsets for the conditions of interest, including six
motion parameters as nuisance regressors. Low-frequency
noise was removed by a filter with a cutoff of 128 s and
serial correlations were taken into account using an auto-
correlation model AR(1). For multivoxel pattern analysis, a
regressor for each of the 96 conditions (12 exemplars 3 2
modalities 3 4 presentations) was entered into the GLM.
Patterns of activation were formed by beta estimates for
each of 96 conditions scaled by the square root of the esti-
mated residual variance for each voxel (Misaki et al.,
2010). Furthermore, the data for each condition were
standardized across voxels to have zero mean and unit
variance (Pereira et al., 2009). For statistical tests 24 betas,
one for each of the 24 unique exemplars, were estimated
based on four presentations each. Finally, for lower dimen-
sional representation analyses eight betas were estimated
in total, one for odd and one for even trials for each
modality-by-valence combination so that these eight exem-
plars did not share stimuli in common. We have used
multiple trials to obtain more stable beta estimates (Con-
nolly et al., 2012) and to further diminish the effects of
semantic identity for this analysis. The eight beta maps
were scaled by the square root of the estimated residual
variance for each voxel (Misaki et al., 2010).

Multivariate Pattern Analyses

The multivariate pattern analysis methods employed in
this work are similar to those that have been successfully
used in our other studies (Baucom et al., 2012; Shinkareva
et al., 2011; Wang et al., 2013). Multinomial logistic regres-
sion and logistic regression classifiers (Bishop, 2006) were
trained to identify patterns of brain activity associated
with affect-eliciting visual and auditory stimuli. Four-
category classification was performed to identify one of
the four conditions associated with affect-eliciting stimuli:

Figure 2.

A schematic representation of the presentation timing showing two positive valence trials,

picture and sound. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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visual positive-valence trials (VP), auditory positive-valence
trials (AP), visual negative-valence trials (VN), and auditory
negative-valence trials (AN). In addition, two-way classifi-
cations were performed to identify positive-valence or
negative-valence trials within visual and auditory modality
separately, as well as positive-valence or negative-valence
trials across the two modalities.

Classification performance was evaluated with fourfold
cross-validation, where each fold corresponded to one pre-
sentation of the 24 exemplars. Before classification, trials
were divided into training and test sets. To reduce the size
of and the noise in the data, we performed feature (voxel)
selection on the training set only. For each cross-validation
fold, a mean of standardized and scaled beta values was
calculated across the three replications for each exemplar.
A voxel was selected if the absolute value of a mean score
surpassed a given threshold for at least one of the 24
exemplars. The classifier was constructed using the
selected features from the training set and was applied
subsequently to the unused test set. Classification accura-
cies were computed based on the average classification
accuracy across the four cross-validation folds. Statistical
significance for the classification accuracies was evaluated
by comparison to an empirically derived null distribution
constructed by 2,000 noninformative permutations of
labels in the training set.

We report the main classification results for multiple
threshold levels, rather than deciding upon an arbitrary
threshold. For conciseness, confusion matrices and two-
way classification accuracies are reported for a single, rep-
resentative threshold level.

Testing Modality-Specific and

Modality-General Hypotheses

One beta was estimated for each of the 24 unique exem-
plars based on the four replications. To provide a statistical
test of modality-specific hypothesis for each individual, we
compared the SD of contrasts reflected in the 2 (modality)
3 2 (valence) design across all gray matter voxels (adjusted
probability � 0.6 based on SPM segmentation) to contrasts
that were orthogonal to the design contrasts. We generated
five sets of design-related contrasts to test sensitivity to: (1)
visual versus auditory trials, (2) positive versus negative tri-
als, (3) visual-positive versus visual-negative trials, (4)
auditory-positive versus auditory-negative trials, and (5) the
two-way interaction (visual-positive and auditory-negative
versus visual-negative and auditory-positive trials). The
sampling distribution of SDs under the null hypothesis was
modeled by generating 10,000 contrasts that were orthogo-
nal to the design contrasts.

Lower Dimensional Representation

STATIS (Lavit et al., 1994), a generalization of principal
components analysis for multiple matrices, was used to

investigate the lower dimensional representation of affec-
tive space from the functional pattern of whole-brain activ-
ity elicited by viewing pictures and listening to sounds
from each of the two valence categories. This technique
has been previously used in neuroimaging literature (Abdi
et al., 2009; Churchill et al., 2012; Kherif et al., 2003; O’Toole
et al., 2007; Shinkareva et al., 2008, 2012) and is reviewed in
great detail in Abdi et al. (2012). A single 8 3 8 condition-
by-condition cross-product matrix was constructed for each
participant and these individual cross-product matrices
were then analyzed by STATIS. Briefly, a compromise
matrix, representing the agreement across individual cross-
product matrices, was computed as a weighted average of
individual cross-product matrices. Participant weights were
derived from the first principal component of the
participant-by-participant similarity matrix. Pairwise partici-
pant similarity was evaluated by the RV-coefficient (Robert
and Escoufier, 1976), a multivariate generalization of the
Pearson correlation coefficient to matrices. A compromise
matrix was further analyzed by principal components
analysis.

We examined the lower dimensional representations
derived from the different subsets of voxels using feature
selection described above. Crucially, the feature selection
method focused on excluding voxels that were not related
to any of the exemplars and was not informed about
modality or valence contrasts. We describe the behavior of
STATIS results for multiple threshold levels and present
the results for a single, representative threshold level, for
conciseness.

Analysis of Behavioral Ratings

The correlation matrix generated for the 24 exemplars
for each participant was submitted to multidimensional
scaling. Scale values from the first dimension were used as
an index of the positive or negative reaction to each stimu-
lus pair. Scale values were then evaluated using a 2
(modality) 3 2 (valence) 3 6 (exemplar) repeated meas-
ures analysis of variance.

RESULTS

Behavioral Ratings

Scale values from the first dimension of multidimen-
sional scaling solutions of behavioral ratings for each par-
ticipant were submitted to a 2 (modality) 3 2 (valence) 3

6 (exemplar) repeated measures analysis of variance. Only
two effects were statistically significant. First, there was a
main effect of valence, F(1, 7) 5 140.9, P < 0.001, with the
mean for positive pairs (0.87) significantly greater than for
negative pairs (20.87). Second, there was a significant
valence-by-modality interaction, F(1, 7) 5 19.5, P < 0.01, in
which the difference in valence values was greater for vis-
ual stimuli (MPositive 5 0.94 and MNegative 5 21.03) than
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for auditory stimuli (MPositive 5 0.79 and MNegative 5

20.71). The reduced valence differences for sounds may
be due to ambiguity in identifying the 2 s samples of the
sounds. Nevertheless, the valence differences for both
modalities were highly reliable, as revealed by simple
effect contrasts, F(1, 7) 5 229.3, partial h2 5 0.970 for pic-
tures and F(1,7) 5 72.0 for sounds, partial h2 5 0.911, Ps
< 0.001.

Identification of Affective States

We examined whether the patterns of activity associated
with affect-eliciting visual and auditory stimuli had identifi-
able neural signatures. First, a classifier was trained for
each participant to determine if patterns of activity associ-
ated with affect-eliciting pictures and sounds were identifia-
ble based on whole-brain activation patterns. For all
participants, accuracies for classification of the four condi-
tions (VP, VN, AP, and AN) significantly (P < 0.05)
exceeded the chance level (0.25) for all the examined levels
of thresholds (Fig. 3A). Examination of confusion matrices
revealed that although most errors were made within the
two modalities, the above chance classification accuracies
could not be solely attributed to the modality. For concise-
ness, we present further results for a single feature selection
cutoff, 2.8. The confusion matrices along with classification
accuracies for each of the participants are shown in Figure
3B. The highest classification accuracy that was achieved
for any of the participants was 0.71, compared to 0.25
chance level. Second, we attempted to identify valence
within each of the modalities separately. We were able to
identify valence for five of the eight participants in either
modality (P < 0.05). These are the same participants that
showed clear diagonal pattern in the confusion matrices for
four-way classification (Fig. 3B). The highest classification
accuracy that was achieved for valence identification was
0.81 for pictures and 0.73 for sounds, compared to 0.50
chance level. Third, we attempted to identify valence across
the two modalities (i.e., training on valence elicited by
sounds data and predicting valence elicited by pictures).
These classification accuracies were at chance level.

In auxiliary analyses we investigated whether informa-
tion in primary sensory cortices is required for valence
identification. First, we have attempted to identify valence
in picture or sound data based solely on information in
the corresponding primary sensory cortices (BA 17 for vis-
ual and BA 41 and 42 for auditory stimuli). These analyses
did not use feature selection. Above-chance accuracies
were found in four of the eight participants for picture
data and in three of the eight participants for sound data.
Second, we trained the classifiers to identify valence in
picture or sound data excluding the corresponding pri-
mary sensory cortices. We were able to identify valence in
pictures for five of the eight participants and valence in
sounds for four of the eight participants. Taken together,
these results suggest that there are significant pattern dif-
ferences, not solely attributable to low-level parameters of

the stimuli, among the two valence categories within each
of the modalities and, therefore, the internal representation
of affect could be examined further.

Testing Modality-Specific and

Modality-General Hypotheses

To examine whether the data for each participant are
consistent with modality-specific or modality-general
hypotheses, we compared the SD of contrasts reflected in
the 2 (modality) 3 2 (valence) design across all gray mat-
ter voxels to contrasts that were orthogonal to the design
contrasts. All eight participants exhibited significant (P <
0.01) contrasts for modality. Seven of the eight participants
exhibited significant (P < 0.01) contrasts for valence within

Figure 3.

(A) Four-way classification accuracies across the 8 participants,

summarized by box plots, are shown for different feature selec-

tion thresholds. (B) Confusion matrices and the corresponding

classification accuracies for the 8 participants, ordered by classi-

fication accuracies, are shown for 2.8 feature selection thresh-

old. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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visual modality and seven of the eight participants exhib-
ited significant (P < 0.01) valence within auditory modal-
ity (Table II). None of the participants showed a
significant contrast for valence-general modality or interac-
tion contrast (P > 0.01). The upshot of this analysis is that
while there is clear evidence for significant variation attrib-
utable to modality-specific valence variation, there is little
evidence supporting significant modality-general valence
variation at a whole-brain level of analysis.

Lower Dimensional Representation

of Affective Space

An initial STATIS analysis was conducted using all the
gray matter voxels for each participant. The compromise
matrix explained 86.61% of the variability in the individual
cross-product matrices, thus warranting its interpretation.
The first component in this analysis explained 70.12% of the
total variance and clearly separated between visual and
auditory conditions. The second component explained 5.98%
of the total variance and clearly separated positive and nega-
tive visual conditions. The rest of the components were not
easily interpretable. The lack of valence separation for audi-
tory condition was likely due to inclusion of a large number
of noisy voxels. A subsequent STATIS analysis was con-
ducted with a subset of voxels that were sensitive to at least
one of the eight exemplars (Fig. 4). This feature selection
was not informed about the modality or valence. The com-
promise matrix explained 94.96% of the variability in the
individual cross-product matrices, thus warranting its inter-
pretation. The examination of the optimal set of weights for
the eight participants revealed that participants were gener-
ally similar in their representation of affective states. Partici-
pants 8 and 7 had the smallest weights, and thus
contributed less to the compromise. Note that these are the
same participants that had the lowest four-way classification
accuracies (Fig. 3B) as well as nonsignificant within-modality
identifications of valence. Examination of the lower dimen-
sional representation revealed that a three-dimensional space
provided the most interpretable solution. Together the three

dimensions explained 96.42% of the total variance and are
easily interpretable. The first component explained 92.76% of
the total variance and represented modality, with strong
separation between visual and auditory conditions. The sec-
ond component explained 2.23% of the total variance and
clearly separated positive and negative visual conditions,
whereas the third component explained 1.43% of the total
variance and clearly separated positive and negative audi-
tory conditions (Fig. 5). This pattern of results is consistent
with the predicted pattern from the modality-specific proc-
essing hypothesis shown in Figure 1. Taken together, the
classification, statistical tests, and lower dimensional repre-
sentation results provide evidence for modality-specific
valence processing and little indication of modality-general
valence processing at the whole-brain level of analysis.

DISCUSSION

Core affect theory proposes two relevant functional neu-
ral networks for processing affective stimuli, the sensory
integration network and the visceromotor network (Barrett
and Bliss-Moreau, 2009). Having two distinct networks
supports the possibility of modality-specific valence proc-
essing, although it does not require it. Our presentation of
affective stimuli using either auditory or visual modalities
provided an opportunity to examine within the fMRI signal
the relationship between valence processing and sensory
modality. The modality-specific valence hypothesis pre-
dicted that there are voxels sensitive to valence differences
in one modality that are insensitive to valence differences
in the other modality. The modality-general valence
hypothesis predicted that there are voxels sensitive to
valence differences across different modalities. Our results
provided several lines of evidence that supported modality-
specific valence processing, but no lines of evidence sup-
porting modality-general valence processing.

Decoding results demonstrated that for a majority of par-
ticipants valence within modality could be significantly
predicted but for no participants was there significant pre-
diction across modalities. Global tests for each individual

TABLE II. Standard deviations for design contrasts, along with P values, shown in parentheses, based on 10,000

orthogonal contrasts

Participant V 2 A VP 2 VN AP 2 AN P 2 N VP 2 VN 2 AP 1 AN

1 72.20 (0.00) 30.83 (0.00) 26.03 (0.06) 17.98 (0.97) 22.15 (0.41)
2 84.21 (0.00) 25.03 (0.17) 28.78 (0.01) 17.86 (0.99) 20.21 (0.90)
3 81.52 (0.00) 31.82 (0.00) 29.41 (0.00) 20.79 (0.90) 22.50 (0.51)
4 66.58 (0.00) 27.15 (0.00) 24.59 (0.00) 18.46 (0.69) 18.17 (0.75)
5 48.14 (0.00) 31.03 (0.00) 32.14 (0.00) 21.29 (0.91) 23.33 (0.55)
6 53.45 (0.00) 26.39 (0.00) 25.65 (0.00) 17.80 (0.69) 18.98 (0.39)
7 50.62 (0.00) 33.80 (0.00) 36.06 (0.00) 23.91 (0.94) 25.49 (0.77)
8 50.99 (0.00) 27.11 (0.00) 29.45 (0.00) 19.17 (0.99) 20.86 (0.86)

Participants are ordered by four-way classification accuracies.
Note: To evaluate significance at a 5 0.05, correcting for multiple comparisons, P values, shown in parentheses, can be compared to
0.01.
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of contrasts applied to the full set of gray matter voxels
demonstrated statistically significant sensitivity of voxels to
modality, valence within the visual modality, and valence
within the auditory modality, but not for valence across
the two modalities. Lower dimensional representations of
similarity patterns across voxels supported modality-
specific processing. Valence differences for pictures were
orthogonal to valence differences for sounds (Fig. 5). Thus,
the pattern of results provides support for modality-

specific valence processing and no support for modality-
general valence processing at the whole-brain level of
analysis. Note that because we did not manipulate arousal,
it is unclear whether arousal differences associated with
auditory and visual stimuli are encoded in a modality-
specific or modality-general way. In previous work with pic-
tures (Baucom et al., 2012), multidimensional scaling of voxel
activation patterns produced a circumplex pattern in which
valence and arousal were independent dimensions. Because

Figure 4.

Locations of voxels used for STATIS analysis, whose average magnitude of scaled response sur-

passed six for at least one of the eight exemplars, are shown for each participant. Participants

are ordered by the four-way classification accuracies. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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of this independence, modality-specific valence processing
found in the current study has no implications for how
arousal is processed. Future research can address this issue.

The finding of modality-specific valence processing is con-
sistent with studies indicating that affective stimuli can
enhance processing in sensory-relevant cortices. Valence has
been shown to influence sensory processing of both visual
(e.g., Lang et al., 1998; Mourao-Miranda et al., 2003) and
auditory stimuli (e.g., Fecteau et al., 2007; Plichta et al., 2011;
Viinikainen et al., 2012). Higher level sensory processing has
also been implicated in processing of emotion stimuli. For
example, Said et al. (2010) demonstrated that regions of the
superior temporal sulcus can be used to decode facial
expressions. Although these previous studies support
sensory-specific affective processing, our results differ in at
least two respects. First, our study tested for modality-
specific affective processing by including affective stimuli
across modalities so that we could test for valence relation-
ships between auditory and visual trials. The previous stud-
ies examined a single type of stimulus modality and tested
in a specific region of interest linked to sensory processing
of the stimuli. Second, we examined differential processing
of positive and negative affect for each modality, whereas
many of the previous studies compare processing of positive
and negative affective stimuli to neutral stimuli.

One methodological concern when examining responses
to affective stimuli is the possibility that differences in
physical characteristics of the stimuli can account for
observed differences between the affective categories (e.g.,
Fecteau et al., 2007). Moreover, an exhaustive search of all

physical characteristics may not be feasible. Thus we can-
not rule out an alternative explanation that the analyses
are sensitive to stimulus attributes correlated to valence.
However, tests indicated that for several features there
was no significant difference. Strong evidence for measure-
ment of valence would derive from successful cross-modal
classification. The lack of cross-modal classification of
valence implies that there was not consistent encoding of
valence across modes captured by a sufficient number of
voxels to enable above chance prediction. This could
reflect a lack of general valence encoding in our paradigm
or insufficient methods for finding such voxels if they
were highly localized. The criticism that multivariate pat-
tern analyses in this instance may be picking up on varia-
bles other than those targeted (valence in this case) holds
for most studies and reflects the correlational nature of the
data. However, we do know that our stimuli differed
strongly on valence and several, but not all, concomitant
variables were accounted for.

One notable study that did examine affective stimuli
across modalities was reported by Peelen et al. (2010).
Their study presented five emotions (anger, disgust, fear,
happiness, and sadness) as portrayed in either videos of
facial expressions, videos of body expressions, or auditory
recordings of vocalized nonlinguistic interjections. Unlike
our results, Peelen et al. (2010) found evidence for
modality-general emotional processing using a searchlight
method. The areas of common emotional processing were
located in the medial prefrontal cortex and the left supe-
rior temporal sulcus. Thus, they found evidence of supra-
modal representations of these emotions in high-level
brain areas linked to affective processing as well as attri-
butions of mental states and theory-of-mind. There are
several differences between our study and Peelen et al.
(2010) that may account for these differences in results.
First, we manipulated valence rather than specific emo-
tions. According to the theory of core affect, valence and
arousal are dimensions that contribute to emotion percep-
tion but do not in themselves constitute the emotional
complex (Barrett and Bliss-Moreau, 2009). Thus, it may be
that when affective responses are integrated into a more
complex emotional percept, modality-general processing of
affect comes into play. Second, our goal was to describe
the internal representation of affect experienced in an inci-
dental exposure paradigm and not localize supramodal
representations underlying the identification of specific
emotions. Supramodal representations may be more likely
to occur when participants are intentionally processing the
stimulus in order to identify the emotion and judge its
intensity, activities in which they engaged in the Peelen
et al. (2010) study. It may be that the act of formulating an
appropriate affect-related response engages the visceromo-
tor network and leads to modality-general affective proc-
essing. Finally, we have examined valence across
modalities at the whole-brain level of analysis and thus
cannot rule out a possibility that all three of our methods
were not sensitive enough to a small number of modality-

Figure 5.

Positive and negative valence for picture and sound stimuli in

the space defined by the first three principal components of the

compromise matrix. Component one accounts for 92.76% of

the variability in the data and contrasts visual and auditory stim-

uli. Component two accounts for 2.22% of the variability in the

data and contrasts positive and negative valence for picture

stimuli. Component three accounts for 1.43% of the variability

in the data and contrasts positive and negative valence for sound

stimuli. Lines are used to label points in close proximity. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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general voxels.2 These proposed explanations for the dif-
ferences in our results and those of Peelen et al. (2010) are
admittedly speculative and should be subject to testing by
manipulation of task and stimulus elements of the design.

Previous studies of affective processing of sounds have
often focused on responses in the auditory cortex. For
example, auditory cortex has been examined for process-
ing of affective sounds with near-infrared spectroscopy
(Plichta et al., 2011). Speech content as well as speaker
identity has been shown to be decoded from auditory cor-
tex (Formisano et al., 2008). Moreover, vocal emotions
(anger, sadness, neutral, relief, and joy) have been success-
fully decoded from bilateral voice-sensitive areas (Ethofer
et al., 2009). Our study expands upon this literature by
suggesting that valence can be successfully decoded from
sound-sensitive areas as well.

Processing affective sounds has been previously shown
to result in similar, but somewhat weaker physiological,
self-report, and behavioral measures compared to process-
ing affective pictures (Bradley and Lang, 2000; M€uhl et al.,
2011). Consistent with these previous findings, our behav-
ioral results showed a greater difference in valence values
for visual stimuli than for auditory stimuli. Our neuroi-
maging results also showed a trend for a stronger affective
response to visual stimuli compared to affective response
to auditory stimuli. It may be that the weaker results for
sounds are due to the choice of specific exemplars,
although the two sets were closely matched in normed rat-
ings of valence (Table I). Alternatively, the pictures might
have been more salient than sounds in our experiment
due to presentation timing and perhaps the tendency of
scanner noise to interfere with the auditory signals to
some degree. Auditory stimuli durations were shortened
from 5–6 s to 2 s, possibly affecting the naturalness of
stimuli. However, the behavioral results showed a signifi-
cant effect for valence for the pairs of shortened stimuli.
Future research is needed to determine whether the audi-
tory modality leads to reduced valence sensitivity.

Modality differences in the timing provide another pos-
sible explanation of why modality-specific valence process-
ing was found in our study. It may be that voxels that
appear to be differentially sensitive to valence for visual
stimuli and auditory stimuli are actually differentially
linked to the timing of valence processing. There is clear
evidence that affective processing of visual stimuli is very
fast and requires little exposure time (Codispoti et al.,
2009; Junghofer et al., 2001, 2006). On the other hand, nat-
uralistic auditory stimuli may require more time to iden-
tify and hence the affective processing of these stimuli
may be delayed relative to visual stimuli. If this is the
case, then different voxels tuned to auditory valence and

visual valence may reflect differences in the temporal
processing of these stimuli rather than reflect strict modal-
ity differences. Investigations of the affective timing of
stimuli presented in these two modalities should be help-
ful in resolving this issue.

In conclusion, we have shown the utility of examining
the similarity structure of neural patterns in describing the
internal representation of affective space. Modality-general
and modality-specific valence hypotheses predicted dis-
tinctly different multidimensional patterning of our stimu-
lus conditions. Our results clearly supported modality-
specific representation for our particular experimental
design. However, as we have discussed, changes in pre-
sentation and task variables might lead to modality-
general valence representations, which could be detected
by these analytic methods. Hence, we believe that
similarity-based analyses of neuroimaging response pat-
terns may provide a complementary and useful set of ana-
lytic tools for testing specific hypotheses concerning
cognitive and affective representations.
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