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Brain activity was monitored while participants viewed picture sets that reflected high or low levels of arousal
and positive, neutral, or negative valence. Pictures within a set were presented rapidly in an incidental viewing
task while fMRI data were collected. The primary purpose of the study was to determine if multi-voxel pattern
analysis could be usedwithin and between participants to predict valence, arousal and combined affective states
elicitedbypictures basedondistributedpatterns ofwholebrain activity. A secondary purposewas todetermine if
distributed patterns of whole brain activity can be used to derive a lower dimensional representation of affective
states consistent with behavioral data. Results demonstrated above chance prediction of valence, arousal and
affective states that was robust across a wide range of number of voxels used in prediction. Additionally,
individual differences multidimensional scaling based on fMRI data clearly separated valence and arousal levels
and was consistent with a circumplex model of affective states.

© 2011 Elsevier Inc. All rights reserved.

Introduction

The representation and processing of emotional states in the brain
has become a fundamental area of studywithin cognitive neuroscience.
Two distinct approaches to understanding affective states have come to
the forefront of the study of emotion. The categorical approach builds on
the finding of a core set of distinct basic emotions, as demonstrated by
studies of the perception of human facial emotional expressions and
basic physiological responses of the autonomic nervous system to
emotional stimuli (Ekman, 1992a,b). Moreover, these basic emotions,
such as anger, fear, disgust, sadness and joy, are thought to be
represented by different neural systems (Panksepp, 1992, 1998).

An alternative to the categorical approach is to consider the
underlying structure of emotions as deriving from two or three basic
dimensions of affective processing (Posner et al., 2005; Rolls, 1999;
Schlosberg, 1954; Watson and Tellegen, 1985). A widely accepted
dimensional model of affect, developed using multidimensional scaling
techniques, conceptualizes the affective space as a circle or circumplex
with two underlying primary dimensions: valence and arousal (Russell,
1980). Valence reflects the hedonic tone of the emotional state, ranging
from positive to negative, while arousal, or activation, reflects the
engagement of the organism, ranging from high to low (Roberts and
Wedell, 1994). The circumplex model of affect suggests that all
emotions or affective states can be distinguished in terms of varying
levels of valence and arousal, with two distinct neural systems
mediating the representation of affective states (Barrett, 1998).

As described above, both the categorical anddimensional approaches
to understanding emotional states have support from behavioral and
neuroimaging studies. One way to resolve this seeming contradiction is
to assume that although emotional states can be described by
dimensional variation along valence and arousal, further categorical
processing of statesmay overlay this structure and result in activation of
distinct cognitive and neural components. Thus, for example, anger and
disgust may both be negative and high arousal states, but their
categorical processing leads to different implications, as described in
appraisal theory (Lazarus, 1991, 1995). Thus, while the methods we
describe in the present study build on the circumplex model of affective
states, we believe they may also be applied to categorical approaches.

Traditionally, neuroimaging studies have used univariate statistical
parametric mapping methods to determine which areas of the brain
subserve the processing of emotional stimuli and the generation of
emotional states. In a meta-analysis of 162 neuroimaging studies of
emotion, Kober et al. (2008) demonstrated thatmedial frontal areas are
co-activated with core limbic structures and that the dorsomedial
prefrontal cortex may underlie the generation of emotional states.
Consistent with dimensional models of emotion, neuroimaging studies
have demonstrated a dissociation of valence and arousal for various
stimulusmodalities, such as olfactory (Anderson et al., 2003), gustatory
(Small et al., 2003), picture (Anders et al., 2004; Grimm et al., 2006;
Nielen et al., 2009), word (Kensinger and Corkin, 2004; Lewis et al.,
2007; Nielen et al., 2009; Posner et al., 2009), and face (Gerber et al.,
2008), as well as emotional experiences induced by the presentation of
evocative sentences (Colibazzi et al., 2010). The results of these studies
suggest that valence and arousal may be represented in separate neural
circuits containing the amygdala, insula, thalamus, dorsal anterior
cingulate cortex, and prefrontal regions. These regions are generally
consistent with the hypothesis that responses to valence are part of
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motivational circuitry linked to mesolimbic structures (Lang and
Bradley, 2010). Response in the amygdala has been associated with
both arousal (Anderson et al., 2003; Colibazzi et al., 2010; Lewis et al.,
2007; Small et al., 2003) and valence (Anders et al., 2004; Gerber et al.,
2008; Posner et al., 2009), suggesting this region may belong to both
valence and arousal networks. Traditionally, the amygdala is thought to
be a part of a subcortical pathway devoted to the processing of
emotional stimuli, but a more recent view suggests the amygdala
modulatesmultiple networks by identifying and allocating resources to
biologically-relevant stimuli (Pessoa and Adolphs, 2010).

As a complement to traditional univariate analyses, examining
whole brain processing of states may prove valuable in identifying
emotions from neuroimaging and in determining the representational
structure of those affective states. The techniques entailed in multi-
voxel pattern analysis (MVPA) are well-suited to the study of affect, as
the pattern-based approach of MVPA detects cognitive states by jointly
investigating information in multiple voxels and is more sensitive
compared to univariate statistical parametric mapping (Haynes and
Rees, 2006; Norman et al., 2006; O'Toole et al., 2007). Likewise, the
results of traditional univariate analyses may be informative for MVPA
techniques, as they suggest a core group of brain structures that may
contribute to whole brain patterns of activity. Previous neuroimaging
studies have investigated the representation of affect with pattern-
based approaches, successfully decoding affective states from patterns
of brain activity located in specific regions of interest as well as from
patterns of whole brain activity. Peelen et al. (2010) used MVPA to
investigate which brain regions encode emotions independently of the
modality (e.g., body, face, voice) through which they are perceived.
Other neuroimaging studies employing MVPA methods have investi-
gated modality-specific encoding of discrete emotional states using
emotionally-evocative voice recordings (Ethofer et al., 2009), facial
expressions (Said et al., 2010), faces showingexpressionsof fear (Pessoa
and Padmala, 2007), and recall of emotional situations (Sitaram et al.,
2011).

The MVPA techniques may also prove useful when the affective
state is subtlymanipulated, as when incidental rather than intentional
methods of inducing affective states are used. In intentional methods
participants are typically told to think about the emotional conse-
quences of a particular affective cue, such as a picture, video or story.
As such, researchers may be analyzing neural imaging signals related
to those voluntary thought processes rather than to the emotional
state itself. In incidental methods the affective content of the stimuli is
not explicitly processed. While a few studies have used incidental
presentation of affective cue stimuli (Ethofer et al., 2009), these
procedures may produce a weaker neural signal that reduces the
power of univariate approaches. The MVPA approach is well suited to
capturing subtle changes in neural processing distributed throughout
the brain, and thus may be ideal for studying emotional responses in
incidental exposure tasks.

The current study used an incidental affect inducement approach in
which affectively scaled pictures were rapidly presented at a 200 ms
rate, and the participant's taskwas simply tomaintain focus on a central
fixation point. Each picture set consisted of 20 photographs and
represented one of five affective conditions resulting from the
combination of low and high arousal with positive, neutral and negative
valence. Our procedure is incidental in that participants were not told
the nature of the study and were not asked to make any evaluations
regarding the pictures. Prior scaling of these pictures (Lang et al., 2008)
demonstrates that when people perceive each picture they have a
reliable affective reaction that can be measured primarily along
dimensions of valence and arousal. Our procedure does not disentangle
the perception of affect from the experiencing of affect.

The purpose of our study was twofold. First, we explored whether
MVPA methods could be used to identify affective states within each
individual by decoding functional patterns of whole brain activity,
thus extending previous MVPA studies of affect to specifically

examining valence and arousal dimensions. Consistent with the
circumplex model (Russell, 1980), we hypothesized that functional
patterns of whole brain activity would contain information discrim-
inating the states in terms of valence and arousal levels, as elicited by
viewing the visual stimuli. Thus, we tested for classification of positive
and negative valence, high and low arousal, and finally the four
separate states. Our statistical approach within individuals was to
train our classifiers on all but one trial of each type and cross-validate
the pattern analysis on the remaining trials. We also used MVPA to
predict affective states across individuals, by training the classifier on
all but one participant and then predicting the emotion state of the
excluded participant.

A second purpose of our study was to extract the internal
representation of affective states elicited by viewing emotionally-
evocative pictures from fMRI data and compare it with predictions
from the circumplex model of affect. While our predictions for
valence- and arousal-based classification are consistent with the
circumplex model of affect, these predictions could also be accounted
for by a categorical model that posits four distinct brain areas for the
emotional states we induce. However, the categorical approach does
not predict recovery of a circumplex relationship from similarity
metrics derived from the fMRI data. We used individual differences
multidimensional scaling (INDSCAL) to explore the lower dimension-
al representation of affective states from functional patterns of whole
brain activity. The internal representation of affect has been
previously shown to separate on the dimension of valence with
electroencephalogram (EEG) data (Onton and Makeig, 2009). In this
work we extended these findings by demonstrating that the internal
representation of affect derived from fMRI data can be separated on
both dimensions of valence and arousal, providing additional support
for the circumplex model of affect. Thus unlike studies that focus on
specific regions of interest, our focus was to utilize the distributed
representations elicited by affective stimuli to capture the underlying
affective states.

Method

Participants

Thirteen right-handed volunteer adults (12 females) from the
University of South Carolina community with normal or corrected to
normal vision participated and gave written informed consent in
accordance with the Institutional Review Board at the University of
South Carolina.

Materials

Participants viewed a series of color photographs obtained from a
database provided by the National Institute of Mental Health Center
for the Study of Emotion and Attention. Pictures were selected based
on normed valence and arousal ratings from the International
Affective Picture System (IAPS), which provides ratings of emotion-
ally-evocative color photos that contain subject matter from a variety
of semantic categories. The photographs were rated along the
dimensions of valence (ranging from unpleasant to pleasant), arousal
(ranging from calm to excited), and dominance (ranging from in
control to dominated). Ratings were obtained using the 9-point Self-
assessment Manikin (SAM) and based on normative studies involving
both adult and child populations (Lang et al., 2008).

Stimuli were matched on hue, saturation, and intensity values in
MATLAB by setting the values for each photograph to the overall mean
for all photos. Five stimulus sets were constructed that consisted of 20
pictures each and that varied in valence and arousal: high arousal
negative valence (HN), low arousal negative valence (LN), low arousal
neutral valence (L0), low arousal positive valence (LP), and high
arousal positive valence (HP). We did not include a high arousal
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neutral valence condition because it was difficult to identify these
pictures in preliminary rating tasks. Pictures for the five sets were
selected based on valence and arousal ratings, with the goal to
maximize differences in valence for positive versus negative sets and
maximize differences in arousal for low versus high arousal sets, while
attempting to match levels on the shared dimensions across sets.
Because arousal and valence values are not independent, precise
matching was not possible. Table 1 presents a summary of the picture
sets used in this study, including the IAPS identification numbers,
summary statistics of the arousal, valence and dominance ratings for
pictures within each set, number of pictures that included human
faces and human bodies, and a short description of each set. Note that
the positive sets differ strongly from the negative sets inmean valence
ratings (MPositive=7.10 and MNegative=2.61), with the neutral set
approximately at the midpoint of the valence scale. Similarly low
arousal and high arousal sets differed strongly in mean arousal ratings
(MLow=3.58 and MHigh=6.67). Whereas valence ratings were fairly
closely matched for sets of the same valence, arousal ratings were
somewhat more variable, especially for the low arousal sets. All sets
included pictures of human faces and human bodies.1

In a behavioral study with a separate group of participants (n=15),
thesefivepicture setswere showntodiffer on thedimensions of valence
and arousal. The behavioral study used the same picture sets and
presentation rate used in the fMRI study, but participantswere asked to
rate their emotional states along one of nine dimensions after each
sequence of pictures. The dimensions reflected the degree to which the
participant reported feeling negative, angry, anxious, sad, calm, relaxed,
excited, happy, and positive. The dimensions of valence and arousal

were not rated directly but were derived from ratings along the other
nine dimensions. A 5×5 correlation matrix of the five states across the
nine ratings was constructed for each individual and INDSCALwas used
to analyze the combined data (Borg and Groenen, 1997). A two-
dimensional solution described the data well, with the results of the
behavioral validation of standardized stimuli displayed in Fig. 1. As
shown, the predicted circumplex relationship was obtained. The
INDSCAL procedure also provides indicators of how well each
participant fits the common model and the relative weighting of
dimensions. Eight of the 15 participants fit the joint configuration with
R² greater than 0.90, threewith R² between 0.60 and 0.90, and fourwith
R² between 0.37 and 0.60. Thus, while themajority of participants' data
waswell explained by themodel, there were individual differences and
some participants were not well described by the model.

To conduct statistical comparisons between the five picture sets,
valence and arousal scores were derived for each participant. These
scores were determined by two dimensional nonlinear MDS solutions

Table 1
Picture sets.

Sets

HN LN L0 LP HP

IAPS
identification numbers

2811, 3500 1111, 1275 2038, 2190 1600, 1603 5470, 5621
3530, 6230 2278, 2490 2200, 2221 1604, 1670 5626, 5629
6250.1, 6260 2590, 2700 2393, 2440 2000, 2370 8030, 8034
6300, 6312 2715, 9000 2480, 2580 2501, 2655 8080, 8161
6370, 6510 9001, 9046 2620, 2745.1 5000, 5010 8170, 8179
6540, 6821 9220, 9331 2840, 5390 5030, 5200 8180, 8185
8485, 9050 9341, 9470 5510, 5530 5711, 5750 8186, 8190
9250, 9252 9471, 9520 5731, 7140 5760, 5800 8200, 8300
9410, 9600 9560, 9571 7205, 7224 5811, 5870 8370, 8400
9635.1, 9921 9911, 9912 7700, 9210 5891, 7545 8490, 8499

Valence M=2.30 M=2.91 M=5.03 M=6.92 M=7.28
SD=0.32 SD=0.55 SD=0.48 SD=0.46 SD=0.41

Arousal M=6.70 M=4.62 M=2.90 M=3.22 M=6.54
SD=0.28 SD=0.63 SD=0.29 SD=0.45 SD=0.41

Dominance M=2.96 M=4.24 M=5.84 M=6.40 M=5.49
SD=0.45 SD=0.59 SD=0.56 SD=0.66 SD=0.51

Pictures with faces 12 10 10 4 7
Pictures with human
bodies

16 9 10 3 18

General description Assault scenes, disasters
scenes, weapons aimed
at viewer

Dead animals, wrecked cars
and buildings, sad or downcast
people

People standing and
sitting, objects, rooms,
plants

Animals, smiling people,
flowers, gardens,
sky scenes

Sky diving, hang gliding,
roller coasters, skiing,
boating

Note: IAPS= International Affective Picture System; HN=High Arousal Negative Valence, LN= LowArousal Negative Valence, L0= LowArousal Neutral Valence, LP= LowArousal
Positive Valence, HP = High Arousal Positive Affect; Statistics summarize 9-point IAPS ratings of pictures in each set.

1 Overall the percentage of human faces in our sets (43%) was close to that in the
IAPS database (approximately 48%). Pictures with faces and bodies were included in all
conditions but were somewhat underrepresented in the LP condition, which was
representative of the data base itself. Although inclusion of fewer of these features
could be used to aid classification of this condition when decoding across the full set of
emotion sets, it would not help in classifying into high and low arousal categories.
Ultimately, features unique to sets (such as flowers in LP or guns in HN) may
contribute to distinguishing sets, but these should be less helpful for the broader
classification of arousal and valence. More generally, our inclusion of many pictures for
each set, with very short exposure to each picture (200 ms), was designed to minimize
classification based on specific features and maximize classification based on the
emotional response to the pictures.
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Fig. 1. Lower dimensional representation of affective space based on behavioral data.
A two-dimensional solution described the data well, providing behavioral validation of
the predicted circumplex relationship. LP — low arousal, positive valence; LN — low
arousal, negative valence; L0— low arousal, neutral valence; HP— high arousal, positive
valence; HN — high arousal, negative valence.
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for each participant, transformed using a Procrustes rotation to the
designmatrixorientation to reflect degreeof valence andarousal. Aone-
way repeatedmeasuresAnalysis ofVariance (ANOVA) conducted on the
valence scores across the five sets revealed a large main effect of
emotion set, F(4,56)=107.1, pb0.001, (MHN=−1.05, MLN=−0.94,
ML0=0.24, MLP=0.93, and MHP=0.82). Bonferroni corrected paired
comparisons indicated that all pairwise differences were significant (at
pb0.05), except for the differences between the two negative valence
sets (HN and LN) and the two positive valence sets (HP and LP). A one-
way repeatedmeasures ANOVA conducted on the arousal scores across
the five sets revealed a large main effect of emotion set, F(4,56)=14.7,
pb0.001, (MHN=0.49, MLN=−0.14, ML0=−0.24, MLP=−0.34, and
MHP=0.24). Bonferroni corrected paired comparisons (pb0.05)
revealed no significant differences between sets within the same
arousal level and significant differences between sets at different
arousal levels, except for a nonsignificant difference between HP and L0
sets. The overall pattern of results provides additional validation of the
manipulated differences in affect states for the five sets.

Experimental paradigm

Participants viewed sets of color photographs depicting various
scenesdesigned to elicit a specific affective state (HN, LN, L0, LP, andHP).
All images were 640×480 pixels and were presented in 32-bit color
using E-prime software (Psychology Software Tools, Sharpsburg, PA).

Functional data were collected in one scanning session. For each of
five experimental conditions there was one set of 20 photographs.
There were 12 presentations of each set, with randomized order of
individual photographs within each set. A fixation cross was super-
imposed on each photograph, and participants were instructed to
maintain fixation throughout the scanning session. Each set of 20
photographs was presented at a rate of 200 ms per photograph, to
minimize the effect of semantic content, and was followed by an 8 s
rest period, during which participants were instructed to maintain
fixation on a fixation cross in the center of the screen (Fig. 2). Thus the
experiment consisted of 60 trials (5 conditions, 12 presentations), and
each trial lasted 12 s.

fMRI procedure

Functional images were acquired on a Siemens Magnetom Trio
3.0T scanner (Siemens, Erlangen, Germany) at the McCausland Center
for Brain Imaging at the University of South Carolina, using a gradient
echo EPI pulse sequence with TR=2198 ms, TE=30 ms and a 90° flip
angle. Thirty-six 3 mm thick oblique-axial slices were imaged with no
gap. The acquisition matrix was 64×64 with 3×3×3 mm voxels.

fMRI data processing and analysis

Data processing and statistical analysis were performed using
Statistical Parametric Mapping 8 software (Wellcome Department of
Cognitive Neurology, London, UK). The data were corrected for slice
timing, motion, and linear trend, and a high-pass filter was applied
(0.008 Hz cut off). Imageswere spatially normalized toMNI space using

a 12-parameter affine transformation. Only voxels common to all
participants were included in the analysis. The data preprocessing steps
andMVPA analysis employed in this work are similar to those that have
been successfully used in other MVPA studies (Mitchell et al., 2008;
Shinkareva et al., 2008, 2011). The percent signal change (PSC) relative
to the average activity in a voxel was computed for each voxel in every
volume. The mean PSC of two volumes, offset 4.4 s from the stimulus
onset (to account for the delay in hemodynamic response), was used as
the input for further analyses (Fig. 2). Furthermore, the mean PSC data
for each voxel was standardized to have a mean of zero and variance of
one.

Pattern classification methods

Classifiers were trained to identify cognitive states from the
pattern of brain activity (mean PSC) elicited by viewing pictures from
four affective categories. Two-category or four-category classification
was performed to identify cognitive states associated with valence
(positive and negative), arousal (low and high), or four affective states
(HN, LN, LP and HP). For classification, classifiers were defined as a
function f: mean_PSC→Yj, j={1, …, k}, where k was the number of
categories used for classification, Yj were categories of valence,
arousal or affect and where mean_PSC was a vector of mean PSC
voxel activations.

Prior to classification, trials were divided into training and test
sets, and relevant features (voxels) were extracted (see below for
feature selection method) from the training set only. The classifier
was constructed using the selected features from the training set. The
classifier was applied subsequently to the unused test set and
classification performance was evaluated with cross-validation.

Feature selection

To reduce the size of the data, only graymatter voxelswith themost
stable responses across multiple presentations of the same conditions
were selected (Mitchell et al., 2008; Shinkareva et al., 2008). Voxel
stability scores were computed by averaging pairwise correlation
coefficients between vectors of presentations of all conditions in the
training set, thus assigning higher scores to voxelswithmore consistent
variation in activity across conditions. Voxels were then ordered within
each individual's data set from highest to lowest stability. We explored
the impact of retaining different numbers of voxels on each analysis,
rather than deciding upon an arbitrary threshold.

Classification

A logistic regression (multinomial logistic regression for four-way
classification) classifier was used for classification of affective states
(Bishop, 2006). Logistic regression is a widely used classifier that learns
the function f: P (Y|X), where Y is discrete dependent variable, and X is a
vector containing discrete or continuous variables. By using the
maximum likelihood estimation, this algorithm estimates the proba-
bility of the given data belonging to anoutput category and classifies the
data into the most probable category. As a classifier, logistic regression

8 s

+

4 s

volumes (TR = 2.2 s)

20 images

seconds

200 ms

...

extracted volumes

Fig. 2. A schematic representation of the presentation timing and data extraction for a single trial.
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directly estimates its parameters from the training data. Twelve-fold
cross-validationwas used to evaluate classification performance, where
each fold corresponded to one presentation of each of the four
conditions. Thus, the classifier was trained on 11 presentations and
tested on one presentation. For binary classification, trials of the same
condition were averaged for the test set. Classification was repeated
iteratively until each presentation served as the test set once.
Classification accuracies were computed based on the average classifi-
cation accuracy across test folds. As a result, classification accuracy was
always based upon the test data only, which remained disconnected
from the training data.

If classification is successful, accuracies should be significantly
different from the chance level accuracy, i.e. the accuracy of guessing.
The significance of classification accuracy was evaluated based on the
binomial distribution B(n, p), where n is the number of trials of each
classification computation and p is the probability of correct classifica-
tion when the exemplars are randomly labeled (Pereira et al., 2009).

Visualization of voxel locations

To investigate the location of voxels that contributed most to
decoding valence and arousal (henceforth, informative voxels), voxels
with the highest and lowest 5% of logistic regression weights were
identified for each cross-validation fold. A union of such voxels across
cross-validation foldswas visualized for each participant. To investigate
the consistency of informative voxel locations across individuals, a voxel
location probability map was generated across participants after
convolving each voxel with a 4 mm Gaussian kernel (Kober et al.,
2008). The probabilitymapwas further thresholded by a simulated null
hypothesis distribution to control for multiple comparisons
(FWE=0.05).

Cross-participant analysis

To establish commonalities between participants' neural repre-
sentations of affective states, we conducted cross-participant classi-
fication. Data from all but one participant were used to train a
classifier to distinguish affective states. The classifier was then tested
on the data of the left-out participant. Trials of the same condition
were averaged for the test set. Classification was repeated iteratively
until each participant's data served once as the test set. Entropy-based
feature selection (Poldrack et al., 2009) was conducted on the
combined data of all participants except the one left out for testing.
The significance of classification accuracy was evaluated based on the
binomial distribution.

Lower dimensional representation

The INDSCAL model was used to investigate the lower dimensional
representation of affective space from the pattern of brain activity
(mean PSC) elicited by viewing photographs from each of the five
affective categories. Prior toanalysis the top400most stable voxelswere
selected for each individual using the feature selection method
described above (that was not informed about the affective categories).
The conditions-by-voxel mean PSC matrices for each individual were
averaged across six alternatingpresentations of each condition to obtain
twodata points, or exemplars, for eachexperimental condition. Pairwise
correlations were computed between exemplars, which resulted in a
single 10×10 exemplar-by-exemplarmatrix for each individual. The 13
correlation matrices were then analyzed by INDSCAL, applying a
monotone function relating similarities to model distances. INDSCAL
fits a common configurationbut allows for the expansion or shrinking of
dimensions for individuals as given by dimensional weight, thought to
reflect attention to that dimension. The analysis also indicates howwell
each individual is fit by the common configuration.

Results

Category identification of affective states within participants

A classifier was trained for each participant to determine if it was
possible to identify the four affective categories based on whole brain
activation elicited by picture stimuli. Classification accuracies for
classification of the four affective states significantly exceeded the
chance level (0.25) for all levels of the most stable voxels (pb0.05), for
the majority of participants (Fig. 3). The highest classification accuracy
obtained for a single participant was 0.77. Accurate classification was
robust across the wide range of voxels used (from 25 to 2000). The
average accuracy increased with number of voxels included up to an
intermediate number and then declined with use of additional voxels.
The voxels selected based on stability were distributed throughout the
brain. Using the 400 voxels with most stable responses, twelve of 13
participants showed significant classification accuracies (pb0.05).

Next, a classifier was trained for each participant to determine if it
was possible to identify positive and negative valence based on brain
activation elicited by picture stimuli. Classification accuracies for the
two valence levels significantly exceeded the chance level (0.50) for
all levels of the most stable voxels (pb0.05) for the majority of
participants (Fig. 4). The highest classification accuracy obtained for a
single participant was 0.92. Using the top 400 voxels with most stable
responses, all 13 participants showed significant classification
accuracies (pb0.05). Once again, average classification accuracy
showed the typical concave function across the number of voxels
included in the analysis.

Finally, a classifier was trained for each participant to determine if
it was possible to identify high or low arousal based on brain
activation elicited by picture stimuli. Classification accuracies for the
two levels of arousal significantly exceeded the chance level (0.50) for
all levels of the most stable voxels (pb0.05) for the majority of
participants (Fig. 5). The highest classification accuracy obtained for a
single participant was 0.92. Using the 400 most stable voxels, twelve
of 13 participants showed significant classification accuracies
(pb0.05). As in the other two classification analyses, average
classification accuracy rose with inclusion of more voxels, peaked at
400 voxels and then slowly declined but remained significant with
inclusion of up to 2000 voxels.

The locations of voxels with largest classifier weights for identifica-
tion of valence or arousalwere distributed throughout the brain (Fig. 6).
The informative voxels were distributed across the brain for a wide
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Chance accuracy
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Mean accuracy

Fig. 3. Within-participant accuracies for classifying affective states. Classification
accuracies across the 13 participants, summarized by box plots, are shown for different
subsets of the most replicable gray matter voxels.
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range of voxels considered by the feature selection method. Moreover,
the locations of informative voxels were similar across participants (as
summarized in Fig. 6B). Informative voxel location clusters that were
robustly identified across participants (based on 2000 voxels) andwere
critical for both valence and arousal decoding included the inferior
temporal gyrus, lentiform nucleus, medial prefrontal cortex, middle
occipital gyrus, middle temporal gyrus, parahippocampus, postcentral
gyrus, and precuneus. Voxel locations specifically informative for
decoding of valence included the anterior cingulate, fusiform, and
inferior frontal gyri, superior parietal lobule, and ventrolateral prefron-
tal cortex. Voxel locations specifically informative for decoding arousal
included dorsolateral prefrontal cortex, inferior parietal lobule, medial
superior temporal gyrus, posterior superior temporal sulcus, and insula.
Notably, voxels in bilateral amygdala were also found informative in
both valence and arousal decoding, although they did not form clusters.

In summary, classifiers trained on single-participant data were
able to identify affective states, valence, and arousal reliably above
chance. Thus, we conclude that information about valence and arousal
is represented in whole brain activation patterns elicited by viewing
photographs within each participant.

Category identification of affective states across participants

To examine the consistency of the neural representations of affect
across participants, the whole brain activation data from all but one
participant were used to identify the affective category of stimuli
presented to the left-out participant. A classifier was trained on the
data from all but one participant and tested on the data from the left-
out participant. The highest accuracy for classifying the four affective
states obtained for any voxel level was 0.75 (compared to 0.25 chance
level). Classification accuracies for the four affective states were
significant for all levels of the most stable voxels we tested (pb0.05)
for the majority of participants (Fig. 7).

Next, a classifier was trained on the combined data from all but one
participant to identify levels of valence in the left out participant. The
highest accuracy for classifying positive and negative valence
obtained for any voxel level was 1.0. Classification accuracies for the
two levels of valence were significant for all levels of the most stable
voxels (pb0.05) for the majority of participants (Fig. 8).

Finally, a classifier was trained on the combined data from all but
one participant to identify levels of arousal in the left out participant.
The highest accuracy for classifying high and low arousal obtained for
any voxel level was 1.0. Classification accuracies for the two levels of
arousal were significant for all levels of the most stable voxels
(pb0.05) for the majority of participants (Fig. 9).

The successful classification of the emotion related properties of
stimuli of each individual from a classifier trained on the other 12
participants implies that the neural activation patterns elicited by
affective categories are highly consistent across individuals. This
similarity in patterns of brain activation suggests that the neural
representation of affect is similar from one individual to another.
These results are consistent with the similarity of locations of
informative voxels across participants (Fig. 6). Note that cross-
participant prediction required recruiting higher numbers of voxels
than within-participant prediction.

Lower dimensional representation of affective space

To examine the lower dimensional representation of affective
space, the correlation matrices for odd and even versions of each of
the five states were generated for each participant based on the most
stable 400 voxels for each participant. The 10×10 correlation
matrices were then input into INDSCAL and a common configuration
was abstracted, with fit indices and dimensional weights for each
participant. In INDSCAL, dimensional weights for each individual are
only interpretable when dimensions are left unrotated.

The two dimensional solution had an overall stress value of 0.27.
Although this is a fairly high value of stress, it represents a strong
reduction from the one dimensional solution (stress=0.42). The
representation is consistent with the circumplex model, with the first
dimension reflecting arousal in that it separates the low and high
arousal conditions, and the second dimension reflecting valence in
that it separates the positive and negative valence conditions (Fig. 10).
The neutral L0 replicates tend to cluster with the negative valence
replicates in this configuration. Note that replicates of each state
tended to be closer to each other in the space than to other states,
reflecting reliability in classification.

As a fit index, two participants had an R² greater than 0.70, three
had R² values between 0.50 and 0.70, four had R² values between 0.40
and 0.50, and four had R² values below 0.40, suggesting these four
were not well fit by the model. Individual differences can be
represented in INDSCAL by differences in the dimensional weights.
While the dimension corresponding to the greatest variation was
arousal (Dimension 1), eight of the 13 participants were shown to
weight valence more than arousal. Overall, the recovered solution
provides support for the circumplex model and appears to be
representative of the majority of participants.
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Fig. 5. Within-participant accuracies for classifying high and low arousal. Classification
accuracies across the 13 participants, summarized by box plots, are shown for different
subsets of the most replicable gray matter voxels.
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Fig. 4. Within-participant accuracies for classifying positive and negative valence.
Classification accuracies across the 13 participants, summarized by box plots, are
shown for different subsets of the most replicable gray matter voxels.
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To examine the dependence of this solution on the specific set of
voxels selected, we conducted INDSCAL analyses on each of 20
successive blocks of 50 voxels. Indices of the correspondence of the
solution to the predicted circumplex were obtained by rotating each
solution to the designmatrix orientation using a Procrustes rotation and
computing the correlations between the rotated dimension values and
the design values for valence and arousal. As a point of comparison, the
400 voxel solution of Fig. 10 resulted in a correlation of r=0.93 with
valence and r=0.93 with arousal when rotated. The correlations for
each successive block of 50 voxels are shown in Fig. 11. The correlations
obtained for three of the first four blocks of 50 voxels are very
comparable to those for the 400 voxel solution. Aswe proceed to blocks
of lower voxel stability, the correlations tend to attenuate, reflecting
reduced correspondence to the circumplex. Interestingly, however, in
these later blocks typically one of the correlations is high, indicating that
voxels of lower stability may still be sensitive to either valence or
arousal. These results support the conclusion that the good correspon-
dence of the INDSCAL solution shown in Fig. 10 is fairly robust across
different sets of voxels selected from the most stable voxels.

The results of visualizing the lower dimensional representation of
affective space indicate that the representation of affect abstracted from
fMRI data includes both valence and arousal. Importantly, the voxel
selection procedure was blind to the dimensional structure. The
underlying dimensions of valence and arousal obtained from neuroim-
aging data were similar to that obtained from behavioral results (Fig. 1)
and lend support to the circumplexmodel of emotion. Furthermore, the
extremeexemplars from the two arousal categories and the twovalence
categorieswere linearly separable in the dimensional space, reflecting a
simple dimensional basis for classification.

Discussion

The current study explored whether MVPA methods applied to
whole brain activity patterns could be used to identify the valence and
arousal levels elicited by viewing of photographs and to examine the
internal representation of affective states from fMRI data for comparison
to dimensional models of affect. In contrast to studies that focus on
specific regions of interest, our focus was to utilize the distributed

Fig. 6.Most informative voxels for decoding of valence and arousal are shown on a surface rendering. Panel A shows the union of most informative voxels across each cross-validation
fold for 5 out of the 13 participants for 400 and 2000 voxels. The hot color map indicates the probability of the top 5% of voxels that were most informative for identifying positive
valence or high arousal. The cold color map indicates the probability of the top 5% of voxels that were most informative for identifying negative valence or low arousal. Panel B shows
the thresholded probability maps (FWE=0.05) of the informative voxels that were consistently identified across all 13 participants.
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representations elicited by affective stimuli to capture the underlying
affective states. Categories of affect, valence, and arousal were
successfully decoded from patterns of brain activation within partici-
pants. The within-participant decoding results demonstrate that
information unique to valence and arousal lies within distributed
patterns of brain activation across the whole brain and can be used to
predict which valence and arousal levels a participant was experiencing
as elicited by viewing of affect-related photographs. Indeed, as shown in
Figs. 3, 4 and 5, within-participant classification was above chance for
the majority of the participants when based on as few as the 25 most
stable responding voxels. However, when classifying across partici-
pants, amuchgreater number of voxelswas required, indicating that the
most stable voxels selected for thewithin-participant classificationmay
be fairly unique to individuals.

Consistentwith the larger number of voxels needed to classify across
participants, the probability maps based on themost informative of the
2000 most stable voxels showed several distinct clusters. The
informative voxels included regions of considerable overlap with
previous MVPA literature of emotion decoding, including the fusiform
gyrus, inferior frontal gyrus, insula, medial prefrontal cortex, anterior
cingulate cortex, and superior temporal gyrus and sulcus (Ethofer et al.,
2009; Kanske and Hasting, 2010; Peelen et al., 2010; Pessoa and

Padmala, 2007; Said et al., 2010). These clusters of informative voxels,
along with a cluster implicating the occipital cortex, have also been
consistently found in neuroimaging studies using statistical parametric
mapping (Bush et al., 2000; Colibazzi et al., 2010; Gerber et al., 2008;
Hagan et al., 2009; Killgore and Yurgelun-Todd, 2004; Narumoto et al.,
2001; Posner et al., 2009; Robins et al., 2009; Wager et al., 2008). The
distributed nature of brain activity containing information about the
valence and arousal of emotionally-evocative pictures may be adaptive,
as quick, distributed processing of emotional stimuli enhances an
organism's ability to respond appropriately (Pessoa andAdolphs, 2010).

In the current study participants were not explicitly evaluating the
affective content. We examined the valence and arousal levels elicited
by viewing of photographs, with the participant's task simply to
maintainfixation on afixation cross. Thus, the current study contributed
to literature that uses incidental methods of inducing affective states
(Ethofer et al., 2009; Nielen et al., 2009). The experimental paradigm
was designed to monitor responses that were not unique to a single
photograph, such as semantic content, but common across a set of
photographs. Moreover, the stimuli used in the current study were
standardized to have the same mean value for hue, saturation, and
intensity. This procedure reduced the ability to decode stimulus
categories based on the lower level neural representations of visual
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Fig. 8. Cross-participant accuracies for classifying positive and negative valence. Cross-
participant classification accuracies across the 13 participants, summarized by box
plots, are shown for different subsets of the most replicable gray matter voxels.
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Fig. 9. Cross-participant accuracies for classifying high and low arousal. Cross-
participant classification accuracies across the 13 participants, summarized by box
plots, are shown for different subsets of the most replicable gray matter voxels.
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properties and increased the likelihood that decoding was based on a
higher level neural representation of affect. Consistent with this
interpretation, the selected voxels were distributed throughout the
brain.

Despite the controls we implemented there are several limitations
that may be placed on interpretations of our study. First, we cannot
disentangle the extent to which our analytic methods are modeling
affective states or brain activity more directly associated with the
perception and semantic processing of the picture stimuli. One
interpretation of the widespread locations of informative voxels found
in our study is thatwe are tapping into systems linked to affect aswell as
semantic and perceptual processing of the stimuli. One way to
disentangle these different sources is to vary the method of inducing
affective states within an experiment and look for common voxels that
are predictive across methods. Second, and building on the prior point,
we did not have physiological or behavioral measures for participants
that indicate to what degree they may have experienced the different
affective states. This is partly a consequenceof usingan incidental task in
which affect was not the focus of processing in the scanner. The success
of our analytic methods suggests that the manipulation of affect was
successful, but we have no independent verification. Finally, although
we have discussed some correspondences between informative voxels
in our study and ROIs identified in other fMRI studies of affect, onemust
be very cautious in interpreting such correspondences. This is because
the discriminative weights we used to identify informative voxels may
not be stable across folds and will generally vary with inclusion or
exclusion of other voxels. Our approach is primarily designed to use
whole brain activation to identify states within and across participants,
rather than to identify the key ROIs involved in processes producing
those states.

Using multidimensional scaling techniques, the lower dimensional
representation of affect was extracted from fMRI data. The resulting
internal representation of affect showed a separation of affective stimuli
based upon the dimensions of valence and arousal. The current findings
lend support to previous behavioral studies investigating the circum-
plex model of affect. While categorical models of affect may account for
the decoding of affective categories, these models do not predict the
circumplex formof the recovered dimensional solution. The circumplex
model of affect suggests that all emotions or affective states can be
distinguished in terms of varying levels of valence and arousal that form
a circular representation in the two dimensional affective space. The
current findings suggest that patterns of brain activity contain
information regarding valence and arousal when representing affective
states. That is, affect can be distinguished in terms of varying levels of
valence and arousal from both the behavioral and neuroimaging data.

The lower dimensional solutions provide additional support for the
utility of the dimensional approach and the circumplex model. The
recovered circumplex structure constructed from fMRI data using
INDSCAL is all the more impressive as it was based on incidental
exposure to affective stimuli, rather than the explicit evaluation of
emotional content. This result provides additional support for the
circumplex model, as it is not dependent on the rating and sorting
procedures used in behavioral literature (Roberts and Wedell, 1994;
Russell, 1980).

The ability to identify the valence and arousal levels elicited by
viewing of photographs across participants supports a common neural
basis for representation of affect across people. Cross participant
classification was achieved despite three major hurdles. First, in-
dividuals are known to widely differ in functional organization. Second,
methodological difficulties exist in normalizing the morphological
differences found among human brains. Third, individuals appear to
differ in the degree to which they weight differences in arousal and
valence, as shown in our INDSCAL analyses. Classification of mental
states across individuals has been previously shown for visually
depicted objects (Shinkareva et al., 2008), concrete nouns referring to
physical objects (Just et al., 2010; Shinkareva et al., 2011), lie detection
(Davatzikos et al., 2005), attentional tasks (Mourão-Miranda et al.,
2005), cognitive tasks (Poldrack et al., 2009), and voxel-by-voxel
correspondence across individuals has been demonstrated during
movie-watching (Hasson et al., 2004). The current results demonstrate,
for the first time, the ability to identify the affective category of a set of
photographs viewed by a participant based on neural activation data
from other participants.

In summary, the results from the current study provide support for
the utility of MVPA methods for analyzing neuroimaging data related
to affect. The affective manipulation was incidental and presumably
resulted in subtle changes in affective states. Despite the relatively
weak signal, the MVPA methods based on whole brain activity
patterns were able to successfully classify states within and across
participants, as well as abstract the internal representation of affective
states consistent with the circumplex model of affect. When
combined with growing evidence of specific neural circuitry that
responds to modulations of valence and arousal (Lang and Bradley,
2010; Nielen et al., 2009; Pessoa and Adolphs, 2010), our results
bolster the conclusion that neural representations of affect states may
be successfully represented along the dimensions of valence and
arousal.
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