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How many calories were in those hamburgers again? Distribution

density biases recall of attribute values

Jessica M. Choplin∗ Douglas H. Wedell†

Abstract

Decisions that consumers make often rest on evaluations of attributes, such as how large, expensive, good, or fattening

an option seems. Extant research has demonstrated that these evaluations in turn depend upon the recently experienced

distribution of attribute values (e.g., positively or negatively skewed). In many situations decisions rely on recalling the

attribute values of each option, a process that has been neglected in much of the previous literature. In two experiments,

participants learned attribute information for labeled stimuli presented within either a positively or negatively skewed

distribution and then they recalled values from labels after approximately one minute. The results demonstrated effects

that are inconsistent with predictions of the category-adjustment model (Duffy, Huttenlocher, Hedges & Crawford, 2010)

that recalled values would shift toward the mean of the distribution of values presented. Instead, results were consistent

with predictions of the comparison-induced distortion model (Choplin & Hummel, 2002) that remembered values would

depend on the density of stimuli within the attribute range. Reasons for these results, alternative models, and implications

for decision-making are discussed.

Keywords:distribution density, delayed decision-making, category adjustment, range-frequency, comparison-induced dis-

tortion.

1 Introduction

Previous research has demonstrated that consumers’ eval-

uations of attribute values, such as judgments of how long

lines are, how good experiences are, how large body sizes

are, or how expensive products are depend on features of

the contextual distribution of values considered at the time

of judgment (for reviews see Niedrich, Sharma, & Wedell,

2001; Parducci, 1995; Wedell, Hicklin & Smarandescu,

2007). Consistent with Parducci’s (1965, 1995) range-

frequency theory of judgment, manipulations of both the

range of values defining the context (e.g., presenting a

product that is more expensive than all others; see Volk-

mann, 1951) and the relative density of values within a

fixed range (e.g., presenting a number of other products

that are close in value to the to-be-evaluated product) af-

fect evaluations.

Historically, researchers have typically investigate these

effects by presenting participants with positively or nega-

tively skewed distributions of values and having partici-

This research was supported by a grant from the DePaul Univer-

sity Research Council and a grant from the National Science Foundation

(NSF-0621664) awarded to Jessica M. Choplin. The authors would like

to thank Victoria Bolender for running Experiments 1 and 2 and Eliz-

abeth Crawford, Gert Haubensak, Ulrich Hoffrage, and Jing Qian for

helpful conversations and comments on previous drafts.

Copyright: © 2014. The authors license this article under the terms of

the Creative Commons Attribution 3.0 License.
∗DePaul University, Department of Psychology, 2219 North Kenmore

Avenue, Chicago, IL 60614. Email: jchoplin@depaul.edu.
†University of South Carolina.

pants evaluate each item by giving a category rating on a

scale. The result is that, for positively skewed distributions

(i.e., many small and few large values), the differences in

judged evaluations between small values are larger than

the differences between large values because of the cor-

responding differences in stimulus ranks (the frequency

principle). For negatively skewed distributions (i.e., many

large and few small values), the differences between large

values are larger than those between small values. Thus,

differences in ratings increase as attribute values are more

densely spaced within a region. While one may argue that

these shifts reflect only a response bias (i.e., changes in

how people answer the question) and not a shift in repre-

sentation (i.e., changes in people’s understandings of val-

ues as large or small), findings of disordinal effects on

similarity ratings (Krumhansl, 1978; Wedell, 1996) and

attractiveness ratings (Cooke & Mellers, 1998) imply that

stimulus representations are altered by density manipula-

tions in some circumstances.

These density effects on evaluations are well docu-

mented, but less is known about how memory for stimulus

values such as calories or other attributes is affected by

manipulations of stimulus density. The purpose of the re-

search presented here was to extend previous research by

investigating the effects of distribution density on recall

of attribute values from memory, rather than evaluations

of known attribute values, and to propose and test models

of these effects. It is important to investigate memory for

attributes, because in many contexts memory may prove
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to be the most important factor in determining the deci-

sions consumers make. Any evaluations made after exact

values have been forgotten will depend upon recall of val-

ues retrieved from memory, and the decisions made after

that point may be vulnerable to memory biases (Higgins &

Lurie, 1983; Huttenlocher, Hedges & Vevea, 2000). Deci-

sions about whether to take a second look at a house one

is considering purchasing might depend upon one’s (possi-

bly biased) recall of room sizes. Decisions about whether

to purchase a used automobile may depend upon one’s

(possibly biased) recall of mileage; and decisions about

whether to eat certain foods might depend upon (possi-

bly biased) recall of calories and fat content. In these and

other contexts, an understanding of the effects of distribu-

tion density on recall of attribute values from memory is

likely to be critical for understanding the judgments and

decisions consumers make.

Experiments 1 and 2 used numbers of calories in ham-

burgers as the test stimuli. These stimuli are relevant to

everyday choice situations, because many consumers in

developed countries want to reduce their caloric intake.

Towards this goal, some health advocates have been back-

ing initiatives that increase awareness of the caloric con-

tent of foods, such as mandating the disclosure of caloric

content on restaurant menus (Clifford, 2013). However,

at this time consumers who wish to reduce their caloric

intake typically need to rely on their memories of these

values. Investigating consumers’ memories for the caloric

content of foods, therefore, represents a domain with po-

tential real-world applications. Note, however, that these

experiments were designed to test models of memory for

attribute values that apply to a wide-range of attribute do-

mains, indeed to any attribute that lies on a continuous

dimension.

One model of memory recall that has been used to ex-

plain how recall of values becomes biased due to the dis-

tributions from which values are sampled is the category-

adjustment model proposed by Huttenlocher and her col-

leagues (Huttenlocher et al., 2000). We next describe this

model. We then contrast the predictions of this model with

findings from research that has investigated distribution-

density effects on evaluations that have been well de-

scribed by Parducci’s (1965) range-frequency model, and

we introduce a modification of this model that predicts

distribution-density effects on recall of attribute values.

We then introduce a comparison-induced distortion the-

ory (Choplin, 2007; Choplin & Hummel, 2002) account of

these effects and report two experiments designed to test

the predictions of the three accounts: Huttenlocher and

her colleague’s category-adjustment model, the modified

version of Parducci’s range-frequency model, and Choplin

and her colleague’s comparison-induced distortion theory.

1.1 Category-adjustment model

Huttenlocher and her colleagues proposed the category-

adjustment (CA) model to explain bias in spatial memory

for location due to a tendency to displace memories to-

ward implicit category prototypes (Huttenlocher, Hedges

& Duncan, 1991). The model has been extended to ac-

count for estimation more generally, such as estimations

used in standard psychophysical tasks in which one at-

tempts to reproduce the size extent of an object (Hutten-

locher, et al., 2000). This model is based on a Bayesian es-

timation process in that it starts with the observation that,

if observers have forgotten the actual, to-be-remembered

stimulus value but know characteristics of the distribution

from which the stimulus value was drawn, then they ought

to take that prior knowledge into account (Huttenlocher, et

al., 2000). In particular, Huttenlocher and her colleagues

demonstrated that observers can improve their average ac-

curacy by biasing their recollection of values closer to the

central tendency (i.e., the mean) of the distribution from

which the values were sampled, so that the expected re-

called value (Vik) of stimulus i in context k will be a

weighted mean of the poorly remembered stimulus value

(Si), represented by the mean of its distribution in mem-

ory, µi, and the central tendency of the distribution for the

relevant category, (ρk).

Vik = λµi + (1− λ)ρk (1)

where λ represents the weight given to the fine-grain in-

formation about the stimulus value and (1− λ) represents

the weight given the prototypical value for that category.

In Equation 1, any uncertainty about the stimulus value

(indexed by λ less than 1.0) is resolved toward the proto-

type value. Given that Vik would be the recalled value of

stimulus i, the bias would then be:

Biasik = Vik − Si (2)

So, if the recalled value (Vik) is greater than Si, then there

is a positive bias or overestimation of the value; and if it

is less than Si, there is negative bias or underestimation.

Essentially, this equation predicts that all values will be

displaced toward the category prototype except the proto-

type. Thus, the X-intercept for the bias function, i.e. the

value for which bias is zero, is the inferred to be the value

of the prototype.

To understand why this strategy improves average accu-

racy, consider the case of an observer who has no knowl-

edge of the actual stimulus value. In this case, the best

guess will be the mean of the category, because that will

be the value that would minimize the mean squared error

of estimates. By similar reasoning, if an observer cannot

remember the exact stimulus value such that the observer’s

best guess would be normally distributed around the ac-

tual stimulus value (best-guess distribution), then average
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Figure 1: Biases in recall predicted by the CA model for

positive skew (open symbols) and negative skew (filled

symbols).
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accuracy can be improved by picking a value in that best-

guess distribution that is closer to the mean of the larger

distribution from which the stimulus was sampled. On

average, this strategy will improve average accuracy —

reduce mean squared error of estimates — because these

guesses will on average be closer to other values in the

distribution.

In the case of symmetric distributions, such as bell-

shaped distributions with many items at the mean and

fewer towards the tails, uniform distributions with equal

numbers of items at all locations, or u-shaped distributions

with fewer items at the mean and many towards the tails,

the central tendency of the category as measured by ei-

ther the mean or median will be exactly at the center of

the range of values. According to Equations 1 and 2, re-

call will then be biased towards the center of the range. In

the case of skewed distributions, both the mean and me-

dian will be higher for values sampled from negatively-

skewed distributions than from positively-skewed distri-

butions. Following Equations 1 and 2, recall will then

be biased upward for a negatively skewed distribution and

downward for a positively skewed distribution.

To see how these biases would affect recall of values in

skewed distributions, consider the pattern of biases pre-

sented in Figure 1 (compare to Figure 2 bottom panel,

which presents the predictions of the modified range-

frequency model, and Figure 4, which presents the predic-

tions of the comparison-induced distortion model). Figure

1 demonstrates the biases predicted by the CA model for

Figure 2: Top panel demonstrates differences in evalua-

tion predicted by RF Theory for positive skew (open sym-

bols) and negative skew (filled symbols). Bottom panel

demonstrates biases in recall predicted by the modified RF

model.
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the negatively- and positively-skewed distributions used

in Experiments 1 and 2 (described shortly; this graph as-

sumes that the value of Parameter λ in Equation 1 is 0.5).

Notice that all of the values sampled from the negatively

skewed distribution presented as filled circles — includ-

ing the smallest and largest values — are above the corre-

sponding values sampled from the positively skewed dis-

tribution presented as open circles. In essence, the CA

model predicts that the shifting of the distribution mean

http://journal.sjdm.org/vol9.3.html
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results in a corresponding shift in the X-intercept of the

bias functions, as the X-intercept represent the distribution

mean, which is higher for the negatively skewed set.

Duffy, Huttenlocher, Hedges, and Crawford (2010)

tested this prediction in a psychophysical experiment in

which participants reproduced line lengths drawn from a

negatively or positively skewed distribution. Lines ap-

peared briefly for 1 s and then, after a 1 s delay, an an-

chor line appeared on the screen that participants adjusted

to the size of the presented line. The pattern of bias they

observed was close to that shown in Figure 1, with both

bias functions fairly linear, negatively sloped, and with X-

intercepts close to the means of the distributions. Consis-

tent with the CA model, the results did not show greater

differences between values within the dense regions rel-

ative to sparse regions of the distribution. Applied to

the stimuli used in Experiments 1 and 2, the CA model

along with the Duffy et al. results would suggest that con-

sumers may have notions about the average caloric values

of hamburgers and adjust toward these values in recall, bi-

asing memory of caloric values upwards or downwards for

the negatively skewed distribution than for the positively

skewed distribution, without producing greater differences

between values within the dense regions relative to sparse

regions. The uniform bias effect of context on different

stimulus values is due to the stimulus distribution being

characterized by a single parameter, the mean, and hence

density within a region is not represented. Note that this

finding is at odds with patterns of results found for cate-

gory rating measures of evaluation.

When might density effects emerge in memory for stim-

ulus values? Wedell (1996) demonstrated that, when

memory constraints were minimal, participants could ac-

cess the context free stimulus representation, and similar-

ity judgments did not reflect density effects. However,

when memory was taxed, large density effects emerged.

Similarly, Pettibone and Wedell (2007a) demonstrated that

categorical bias in ratings did not emerge when the stim-

ulus was present, but large effects did emerge when the

names of the stimuli were learned and then names served

as cues for subsequent rating. This type of situation in

which values are recalled from name or label cues is com-

mon in everyday life. Returning to previous examples,

one may be given the cue “the second apartment seen”

and then have to reproduce information about the size of

its rooms. The present research then was designed to test

the boundary conditions for the findings of Duffy et al.

(2010) by having participants learn attribute values for la-

beled stimuli, and then having them reproduce those val-

ues from label cues after a short delay. These conditions

are particularly common for consumers choosing between

products where they know the names of the products and

they need to recall the product attribute values to make

a decision. Under these circumstances, we would expect

density effects to emerge and produce a pattern of bias

quite different from that predicted by the CA model and

shown in Figure 1.

We next present two models that predict density effects

on recall of attribute values under these circumstances: a

modification of the range-frequency model (Wedell, 1996)

and the comparison-induced distortion model (Choplin &

Hummel, 2002).

1.2 Modified range-frequency theory

Previous models of distribution-density effects were pri-

marily designed to explain judgments on category-rating

measures of evaluation (but see Corter, 1987; Krumhansl,

1978; Schifferstein & Frijters, 1992; Wedell, 1996; for ex-

ceptions). Parducci’s (1965; 1995) Range-Frequency (RF)

theory is, perhaps, the most successful model of contex-

tual evaluation (especially under the conditions explored

in Experiments 1 and 2 in which all values were presented

simultaneously; Parducci, 1992). The top panel of Figure

2 demonstrates the pattern of category rating judgments

predicted by RF theory if participants were to evaluate the

values sampled from the negatively and positively skewed

distributions used in Experiments 1 and 2 (this graph as-

sumes equal weighting of range and frequency principles).

Whereas the CA model predicts that values sam-

pled from negatively-skewed distributions will be recalled

larger than values sampled from positively-skewed distri-

butions (see Figure 1), RF theory predicts that category-

rating evaluations of values sampled from positively-

skewed distributions will be evaluated larger than values

sampled from negatively-skewed distributions. Further-

more, in contrast with the CA model, which predicts that

all differences will be undervalued, RF theory predicts that

differences in dense regions will be overvalued relative to

differences in sparse regions. Finally, whereas the CA

model predicts that recalled values will be a linear func-

tion of presented values, albeit with a less steep slope, RF

theory predicts negatively accelerated functions (curving

downward) for positively skewed distributions and pos-

itively accelerated functions (curving upward) for nega-

tively skewed distributions.

Parducci’s (1965; 1995) RF theory explains why con-

sumers judge values drawn from positively skewed dis-

tributions to be larger than values drawn from negatively

skewed distributions and also why they overweight differ-

ences in dense regions relative to differences in sparse re-

gions, by assuming that they use frequency (i.e., percentile

rank) information in evaluation (e.g., an item at the 95th

percentile would have a value higher than 95% and lower

than only 5% of the other values in the distribution; see

Stewart, Chater & Brown, 2006, for an application of this

model to loss aversion). According to this theory, con-

sumers judge values drawn from positively skewed distri-
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butions (top curve, open symbols in the top panel of Figure

2) to be larger than values drawn from negatively skewed

distributions (bottom curve, filled symbols in the top panel

of Figure 2), because percentile ranks accrue rapidly at

the lower end of positively skewed distributions but ac-

crue very slowly at the lower end of negatively skewed

distributions. A value drawn from a positively skewed dis-

tribution will then have a higher percentile rank than the

same value drawn from a negatively skewed distribution

(i.e., in Figure 2, 743.5 calories is at the 83rd percentile in

the positively skewed distribution [6 out of 7], but is only

at the 17th percentile in the negatively skewed distribution

[2 out of 7]).

Furthermore, according to this theory, consumers over-

weight differences in dense regions relative to differences

in sparse regions, because percentile rank differences ac-

crue quicker in dense regions than in sparse regions. In

the curve representing evaluations of values drawn from

the positively skewed distribution in the top panel of Fig-

ure 2 (top curve, open symbols), the difference between

the percentile rank of 564.0 calories (0th percentile) and

743.5 calories (83rd percentile) is greater than the differ-

ence between the percentile ranks of 743.5 calories and

923.0 calories (100th percentile). Likewise, in curve rep-

resenting evaluations from the negatively skewed distri-

bution in the top panel of Figure 2 (bottom curve, filled

symbols), the difference between the percentile ranks of

743.5 calories (17th percentile) and 923.0 calories (100th

percentile) is greater than the difference between the per-

centile rank of 564.0 calories (0th percentile) and 743.5

calories (see Birnbaum, 1974, and Niedrich et al., 2000,

for strong tests of the range-frequency model predictions

of density effects).

Formally, the RF model predicts that the internal judg-

ment of stimulus i in context k on a 0–1 scale is a weighted

average of two proportions, the range value, Rik, and the

frequency value (i.e., proportional rank), Fik:

Jik = wRik + (1− w)Fik (3)

where w is the relative weighting of range values. The

range value is calculated by the proportion of the range

falling below the stimulus value and the frequency value

is calculated by the proportion of ranks falling below the

stimulus rank (i.e., the percentile rank divided by 100).

When the end-stimuli are equated across distributions, one

typically assumes that range values for the same stimuli

will be equated as well. Thus, all contextual effects in this

case are due to the different frequency values. Percentile

ranks rise quickly in the positively skewed distribution so

that the judgment of a mid-range stimulus will be above

the midpoint of the scale. Alternatively, percentile ranks

rise slowly in the negatively skewed distribution so that the

judgment of a mid-range stimulus will be below the mid-

point of the scale. This bias is in the opposite direction as

predicted by the CA model and is nonlinear so that effects

are minimized at the end stimuli.

Note that because RF theory applies to evaluation and

not to recall of stimulus information, it does not make di-

rect predictions concerning how memory for stimulus val-

ues will be altered by the density manipulation. To do so

requires some auxiliary assumptions. Following Higgins

and Lurie (1983), we may assume that evaluations may

be better remembered than the stimulus values themselves

when the delay between encoding and recall is sufficiently

long. Higgins and Lurie found that when asked to recall

values after a long delay, participants responded as if they

mapped their previous category ratings onto the currently

available contextual set of stimulus values. In line with

this finding, we assume that implicit RF values that may

been generated at encoding are then mapped onto the re-

membered range or mean of values in memory.

Equation 4 presents a flexible approach to consider how

RF values may be mapped onto the response scale:

Biasik = c+aµk+b
[

w
Si − 564

923− 564
+(1−w)Fik

]

−Si (4)

where Si is the stimulus value and w is the relative range

weighting. If we wish to consider a simple linear trans-

formation that does not depend on distribution, then we

would use the parameters c and b only and set a to 0. When

this is done, c is the response value assigned to the min-

imum judgment value (0) and b is a multiplicative con-

stant relating changes in judgment values to changes on

the response scale. The pattern of bias predicted by the

RF model of Equation 4 is illustrated in the bottom panel

of Figure 2, with w = .5 and assuming a simple match-

ing transformation with c = 564 (the minimum value pre-

sented) and b = 923−564 (the range of values presented).

All differences in bias between the two distributions are

due to the RF model, with no differences predicted at the

end stimuli, since these have the same range and frequency

values across the two distributions. The key point here is

that the predicted bias from a model based on RF values is

very different from that based on the CA model. Whereas

the CA model predicts linear functions, the RF model pre-

dicts nonlinear functions. Whereas the CA model pre-

dicts the negatively skewed function is above the posi-

tively skewed function, the RF model predicts the reverse.

Thus, the predictions from these two models should be

easily distinguishable. RF theory predicts that for posi-

tively skewed distributions there will be larger differences

between the recalled values of attributes at the lower end

of the range than at the upper end of the range. That is,

when trying to recall the values 564.0, 743.5, and 923.0

calories, there will be biases such that the difference be-

tween the recalled values of the lower two will be greater

than the difference between the recalled values of the up-

per two. This pattern will be reversed for the negatively

http://journal.sjdm.org/vol9.3.html


Judgment and Decision Making, Vol. 9, No. 3, May 2014 Distribution density effects 248

skewed distribution, such that the difference between the

recalled values of the lower two will be smaller than the

difference between the recalled values of the upper two.

It is also useful to consider how the RF and CA mod-

els might be combined to produce a more complex pattern

of bias. This is captured in Equation 4 by the inclusion

of a term weighting the mean of the relevant distribution,

aµk. As a grows larger, responses shift more toward the

mean of the distribution, as postulated by the CA model.

In terms of the bottom panel of Figure 2, this means the

bias function for the positive skewing condition would

shift down relative that for the negative skewing condi-

tion. This results in responses to the end stimuli showing

assimilation while responses for the middle stimuli still

show contrast. In Section 4, we fit a three-parameter ver-

sion of Equation 4 (with a, b and w free to vary) as well as

a four-parameter version (with c additionally free to vary).

In addition to range-frequency theory, a host of other

models have been proposed to explain particular aspects

of contextual effects on category ratings (Baird, 1997;

Haubensak, 1992; Stewart & Brown, 2004; Stewart et al.,

2006; Petrov & Anderson, 2005). Like RF theory, these

approaches generally do not address both evaluation and

estimation from memory. An alternative theory that pre-

dicts density effects both on memory estimation and eval-

uation is the comparison-induced distortion theory (CID)

developed by Choplin and her colleagues (Choplin, 2007;

Choplin & Hummel, 2002). Thus, CID theory may serve

as a link to understanding how context affects both judg-

ment and memory and is discussed next.

1.3 Comparison-induced distortion theory

Choplin and her colleagues have proposed an alternative

account of distribution-density effects (called comparison-

induced distortion theory or CID theory; see Choplin &

Hummel, 2002, 2005, for a discussion of these effects

and Choplin, 2007, for mathematical modeling of these ef-

fects). The research reported here is the first to investigate

these predictions empirically for recall of attribute values.

At encoding participants might look at a list of hamburgers

and their associated calories and compare the numbers of

calories associated with hamburgers. Later when partici-

pants are trying to recall the number of calories in ham-

burgers, they might remember the comparative judgments

(e.g., more calories than the ¼ lb. Burger) even if they

have forgotten the exact values associated with the ham-

burgers and rely on that comparative judgment to produce

an answer (Higgins & Lurie, 1983).

The basic idea underlying this account is that by hav-

ing only inexact memory for some of the values, knowing

the rank order, and interpolating intermediate differences

between values to fill in the memory gaps as best pos-

sible, consumers will inevitably overestimate differences

between values in the dense regions and underestimate

differences in the sparse regions of attribute space. This

interpolation of intermediate differences between values

could be limited to adjacent items, but would not need

to be. Indeed mathematical modeling reported on in Sec-

tion 4 found that the model fit better when each value was

equally likely to serve as a comparison stimulus to all of

the other values.

According to the CID theory view, consumers inter-

polate intermediate differences between values because

language-expressible magnitude comparisons (e.g., “this

hamburger has more calories than that hamburger”) sug-

gest intermediate differences (Choplin & Hummel, 2002).

The judgment that a hamburger contains “more calories

than the ¼ lb. Burger”, for example, would suggest that it

is unlikely to have 1 more calorie than the ¼ lb. Burger.

Although one more calorie is technically “more”, a differ-

ence of 1 calorie is less than consumers typically mean

when they make such comparative judgments. If there

were only a 1 calorie difference, most native English

speakers would have judged the two hamburgers to have

“approximately the same” number of calories. The ham-

burger would also be unlikely to be 1,000 more calo-

ries, because 1,000-calorie differences among hamburg-

ers are rare. Rather the comparison “more calories than

the ¼ lb. Burger” is likely to suggest an intermediate dif-

ference (Rusiecki, 1985). This intermediate difference is

called the comparison-suggested difference (D), because

it is the difference that is suggested by the verbal compar-

ison. This difference of D can then be used to interpolate

differences and reconstruct unknown values, albeit with

systematic biases.

These intermediate-sized D-values may come from a

Bayesian estimation process similar to the one used in

Huttenlocher and her colleagues’ CA model. For known

categories, the primary difference between the CA model

and CID may be the category from which the mean is cal-

culated. For the CA model, the relevant category is the

entire category. If the to-be-remembered attribute value

is the number of calories and the only thing the estima-

tor knows about the item being estimated is that it is a

hamburger, then the relevant category will be all known

hamburgers. However, if consumers also know that the to-

be-estimated hamburger has “more calories than the ¼ lb.

Burger”, then the relevant category may not be all known

hamburgers, but rather just those that have more calories

than the ¼ lb. Burger. Hamburgers that have fewer calo-

ries than the ¼ lb. Burger could be excluded from the

category, thereby partitioning the category into two cat-

egories: those with more and those with fewer than the ¼

lb. Burger. The mean of the category of hamburgers with

more calories than the ¼ lb. Burger will be greater than

the mean of the entire, unpartitioned category. Therefore,

the CID theory may be a variation of the CA model under
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Figure 3: Predicted comparison-biased recall of values

from memory. Arrows represent predicted biases in val-

ues drawn from positively and negatively skewed distri-

butions. CID predicts that the 564.0-calorie and 923.0-

calorie hamburgers will be recalled smaller in the pos-

itively skewed distribution and larger in the negatively

skewed distribution, while the 743.5-calorie hamburger

will be recalled larger in the positively skewed distribu-

tion and smaller in the negatively skewed distribution.
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specific conditions (but see Choplin & Hummel, 2005, for

a demonstration of CID effects in a novel category where

CID theory cannot be considered a variation of the CA

model).

No matter where these intermediate-sized D-values

come from (D was a free parameter in the modeling pre-

sented below), consumers might rely upon them to in-

terpolate differences and reconstruct values from mem-

ory whenever their memories are inexact. In particular,

the comparison-biased recalled value of item i when com-

pared to item j (Vij) might be a weighted average of the

poorly remembered, but unbiased, stimulus value of i (Si)

and the expected value that is created by the comparison

(Eij ; E for expected) where the expected value of item

i can be calculated from the poorly remembered, but un-

biased, value of the stimulus, item j, to which item i is

compared (Sj) and the comparison-suggested difference

(D):

Vij = vSi + (1− v)Eij (5)

where Eij = Sj −D when Sj > Si

and Eij = Sj +D when Sj < Si.

Here v represents the weight given to the poorly remem-

bered, but unbiased, stimulus value of i (Si) bound be-

tween 0 and 1.

This model predicts that recall of values that are closer

to each other than D will be biased apart and recall of val-

ues that are farther from each other than D will be biased

together. The exact predicted biases will depend upon the

comparison-suggested difference (D). The Bias of stimu-

lus i when compared to stimulus j then can be calculated

as the difference between the recalled value (Vij) and the

stimulus value (Si).

Biasij = Vij − Si (6)

A value that is compared to a value that is slightly lower

than it (i.e., where the difference is less than D), for ex-

ample, will then be biased upwards, because Eij will be

greater than Si (since Sj+D > Si given that D > Si−Sj)

producing a positive bias.

Figure 3 presents a schematic representation of how the

CID model might apply to the stimulus design of Exper-

iments 1 and 2, assuming that D is larger than the small-

est presented differences and smaller than the largest pre-

sented differences. Because values in the dense regions

would be biased apart relative to values in sparse regions,

CID predicts that differences in dense regions will be over-

valued relative to differences in sparse regions. Values in

the dense regions (i.e., 564.0 and 743.5 calories in the pos-

itively skewed distribution and 743.5 and 923.0 calories in

the negatively skewed distribution) will be biased away

from adjacent values. The recalled values of the 564.0-

calorie hamburger in the positively skewed distribution

and the 743.5-calorie hamburger in the negatively skewed

distribution will be biased downwards (represented by the

leftward arrows in Figure 3); and the recalled values of the

743.5-calorie hamburger in the positively skewed distri-

bution and the 923.0-calorie hamburger in the negatively

skewed distribution will be biased upwards (represented

by the rightward arrows in Figure 3). This pattern is re-

versed for the positively skewed distribution.

Similar to the CA model, if D were extremely small,

then all values would be biased together (assimilation).

However, the CID model predictions in this case differ

from the CA model prediction as the degree to which the

values would be biased together would be greater in sparse

regions than the dense regions. Hence, rather than the

straight-line bias functions shown in Figure 1 for the CA

model, the CID model would again have nonlinear func-

tions but the functions would not cross over as all data

points would reflect assimilation.

To illustrate the predictions of the CID model, one must

make assumptions concerning how the retrieved compari-

son stimulus depends on context. A simplifying assump-

tion is that all values in the distribution are equally likely

to serve as a comparsion stimulus. Thus, bias for stimulus

i in context k can be represented as follows:

Biasik = vSi+ (7)

(1− v)[
∑

(SAj −DA) +
∑

(SBj +DB)]/6− Si.

Analogous to the CID model fitting done by Choplin

and Hummel (2005), separate D values for upward and

downward comparisons are posited. In Equation 7, 1 − v
is the weighting of the comparison distorted value, Si is

http://journal.sjdm.org/vol9.3.html


Judgment and Decision Making, Vol. 9, No. 3, May 2014 Distribution density effects 250

Figure 4: Biases in recall predicted by the CID model for

positive skew (open symbols) and negative skew (filled

symbols).
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the value of the stimulus, SAj is the value of each com-

parison stimulus above the target value (A for above), DA
is the expected difference for each stimulus that is above

the target value (note that since these stimuli are above the

target the expected difference will be below these stimuli,

back down towards the target), SBj is the value of each

comparison stimulus below the target value (B for Below),

DB is the expected difference for each stimulus that is be-

low the target value (note that since these stimuli are be-

low the target the expected difference will be above these

stimuli, back up towards the target), and 6 is the number

of comparisons. Equation 7 has three fitted parameters, v,

DA and DB.

Figure 4 illustrates the application of this model to the

example used for Figures 1 and 2, with DA = DB = 200

and v = 0.5. As shown, the form of the bias functions

are essentially the same as described by the modified RF

model. However, this version of the model entails a cross-

ing over of the functions so that bias is in the opposite

direction for end stimuli than for stimuli in the middle.

Both the modified RF model and the standard CID model

predict density effects that are qualitatively different from

the standard CA model. The goal of Experiments 1 and

2 was to investigate whether recall of values from skewed

distributions when memory is taxed and consumers have

labels for the to-be-recalled values will follow the pattern

described by the CA model or the patterns described by

the modified RF and CID models. Results are presented

along with the quantitative fits of these models to the data.

Table 1: Presented distributions of hamburgers and asso-

ciated calories in Experiments 1 and 2.

Presented hamburgers
Positive

skew

Negative

skew

1/4 lb. Burger 564.0 564.0

1/3 lb. Cheeseburger 599.9

1/3 lb. Bacon Cheeseburger 635.8

1/3 lb. Deluxe Burger 671.7

1/3 lb. Double Burger 707.6

1/2 lb. Big Double Burger 743.5 743.5

2/3 lb. Big Bacon Double Burger 779.4

2/3 lb. Big Bacon Double Deluxe

Burger
815.3

2/3 lb. Super Bacon Double Burger 851.2

2/3 lb. Super Big Bacon Double

Deluxe Burger
887.1

2/3 lb. Monster Double Burger 923.0 923.0

2 Experiment 1

Experiment 1 investigated distribution-density effects on

recall of values from memory when values were presented

simultaneously (Haubensak, 1992; Parducci, 1992). Like

previous research with numerical stimuli (Birnbaum,

1974; Wedell, Parducci & Roman, 1989), values were

presented in ascending or descending orders on the page.

Participants viewed either the hamburgers and associated

calories listed under positive skew or the ones listed under

negative skew in Table 1 and later, after a short distracter

task, recalled those values from memory. The CA and CID

models predict that the smallest value (564.0 calorie; ¼

lb. Burger) and largest value (923.0 calorie; 2

3
lb. Mon-

ster Double Burger) will both be recalled larger if drawn

from a negatively skewed distribution than if drawn from a

positively skewed distribution. The CID and modified RF

model predict that the medium-sized value (743.5 calorie;

½ lb. Big Double Burger) will be recalled larger in the pos-

itively skewed distribution than in the negatively skewed

distribution.

2.1 Method

2.1.1 Participants

One hundred people volunteered to participate after being

approached by the experimenter on the DePaul University

campus or in the surrounding community. Fifty partici-

pants were in each of the positively and negatively skewed

conditions.
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2.2 Materials and procedure

Participants viewed seven hamburgers and their respective

caloric values listed vertically from the top of the page

to the bottom in either an ascending or a descending or-

der. The hamburgers and their associated caloric values

are shown in Table 1. We were primarily interested in

recall of three values: the ¼ lb. Burger, ½ lb. Big Dou-

ble Burger, and 2

3
lb. Monster Double Burger. To create a

positively skewed distribution of values, four hamburgers

with caloric values between the caloric values of the ¼ lb.

Burger and the ½ lb. Big Double Burger were included in

the distribution of values (see Table 1). To create a nega-

tively skewed distribution of values, four hamburgers with

caloric values between the caloric values of the ½ lb. Big

Double Burger and the 2

3
lb. Monster Double Burger were

included in the distribution of values.

To ensure that participants spent some time processing

the seven values, they were asked whether they were sur-

prised by the number of calories in the distribution of ham-

burgers they had seen. Participants were then given a dis-

tracter task that lasted for approximately one minute in

which they reviewed “Things You May Not Know” such

as “The 57 on Heinz ketchup bottle represents the vari-

eties of pickle the company once had” and “40% of Mc-

Donald’s profits come from the sales of Happy Meals” and

then indicated whether or not they knew these things. This

distracter task was followed by a surprise recall task in

which they recalled the number of calories in each of the

seven hamburgers. The questionnaire on which partici-

pants recalled calories presented hamburgers in the same

order as the hamburgers were originally presented. Partic-

ipants were instructed to estimate values, if they could not

recall exact values.

2.3 Results

Recalled numbers of calories are presented in the top panel

of Table 2, with Figure 5 showing the pattern of bias. Con-

sistent with the predictions of the CA model and CID, but

not predicted by the modified RF model, the smallest and

largest values were recalled significantly larger when they

were placed within the negatively skewed distribution than

when they were placed within the positively skewed distri-

bution. Participants recalled significantly more calories in

the 564.0-calorie ¼ lb. Burger when it was placed in a neg-

atively skewed distribution of values (546.4 calories) than

when it was placed in a positively skewed distribution of

values (452.9 calories), t(98)=3.47, p < .01. Participants

also recalled marginally more calories in the 923.0-calorie
2

3
lb. Monster Double Burger when it was placed in a neg-

atively skewed distribution of values (953.1 calories) than

when it was placed in a positively skewed distribution of

values (893.3 calories), t(98)=1.79, p < .1.

Figure 5: Biases observed in Experiment 1 for positive

skew (open symbols) and negative skew (filled symbols).
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Consistent with the CID and the modified RF models,

but inconsistent with the CA model, participants recalled

more calories in the 743.5-calorie ½ lb. Big Double Burger

when it was placed in a positively skewed distribution

of values (770.5 calories) than when it was placed in a

negatively skewed distribution of values (646.5 calories),

t(98)=4.64, p < .01. As described earlier, only the CID

model predicts this pattern of observed bias for both the

end values and the middle value.

3 Experiment 2

The results of Experiment 1 supported the predictions of

the CID model. However, the sequences in which val-

ues were presented might have made this pattern of results

particularly likely. In particular, caloric values were pre-

sented simultaneously in either an ascending or a descend-

ing order in Experiment 1. This format might have con-

strained participants to make primarily pairwise compar-

isons among adjacent values. However, the CID model’s

qualitative predictions outlined above do not depend upon

values being compared to any particular values (see the

model fitting below which found that target values are

equally likely to be compared to all contextual values).

Furthermore, menus that present nutritional information

such as the caloric content of foods often do not present

this information in ascending or descending order. The

purpose of Experiment 2 then was to investigate whether

the effects observed in Experiment 1 would generalize to
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Table 2: Recalled number of calories.

Experiment 1
Presented

values

Positive

skew

Negative

skew

1/4 lb. Burger 564.0 452.9 546.4

1/3 lb. Cheeseburger 599.9 497.4

1/3 lb. Bacon Cheeseburger 635.8 603.9

1/3 lb. Deluxe Burger 671.7 638.3

1/3 lb. Double Burger 707.6 694.4

1/2 lb. Big Double Burger 743.5 770.5 646.5

2/3 lb. Big Bacon Double Burger 779.4 697.7

2/3 lb. Big Bacon Double Deluxe Burger 815.3 768.9

2/3 lb. Super Bacon Double Burger 851.2 811.0

2/3 lb. Super Big Bacon Double Deluxe Burger 887.1 868.4

2/3 lb. Monster Double Burger 923.0 893.3 953.1

Experiment 2: Simultaneous presentation

1/4 lb. Burger 564.0 521.3 576.6

1/3 lb. Cheeseburger 599.9 587.2

1/3 lb. Bacon Cheeseburger 635.8 636.6

1/3 lb. Deluxe Burger 671.7 688.3

1/3 lb. Double Burger 707.6 727.4

1/2 lb. Big Double Burger 743.5 778.4 664.9

2/3 lb. Big Bacon Double Burger 779.4 716.17

2/3 lb. Big Bacon Double Deluxe Burger 815.3 749.0

2/3 lb. Super Bacon Double Burger 851.2 794.7

2/3 lb. Super Big Bacon Double Deluxe Burger 887.1 835.4

2/3 lb. Monster Double Burger 923.0 868.6 898.6

Experiment 2: Sequential presentation

1/4 lb. Burger 564.0 506.3 551.2

1/3 lb. Cheeseburger 599.9 556.7

1/3 lb. Bacon Cheeseburger 635.8 597.5

1/3 lb. Deluxe Burger 671.7 644.2

1/3 lb. Double Burger 707.6 688.6

1/2 lb. Big Double Burger 743.5 748.6 664.2

2/3 lb. Big Bacon Double Burger 779.4 740.4

2/3 lb. Big Bacon Double Deluxe Burger 815.3 781.5

2/3 lb. Super Bacon Double Burger 851.2 813.9

2/3 lb. Super Big Bacon Double Deluxe Burger 887.1 860.1

2/3 lb. Monster Double Burger 923.0 876.3 914.8

Note: The smallest (1/4 lb. Burger) and largest (2/3 lb. Monster Double Burger)

values were recalled larger, but the value at the middle of the range (1/2 lb. Big

Double Burger) was recalled smaller, when drawn from the negatively skewed

distribution than when drawn from the positively skewed distribution.
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random sequences of values (Sokolov, Pavlova & Ehren-

stein, 2000). Values were presented in random orders

either sequentially or simultaneously (Haubensak, 1992;

Parducci, 1992).

3.1 Method

3.1.1 Participants

Two hundred volunteers participated after being ap-

proached by the experimenter on the DePaul University

campus. There were fifty participants in the negatively

skewed condition and fifty participants in the positively

skewed condition in each of the simultaneous-presentation

and sequential-presentation conditions.

3.2 Materials and procedure

Fifty random sequences were created for each of the

positively and negatively skewed distributions of values

presented in Table 1. Participants in the simultaneous-

presentation condition viewed these seven values pre-

sented in a random order from the top to the bottom of

the same page. Participants in the sequential-presentation

condition saw the exact same 50 sequences as did the par-

ticipants in the simultaneous-presentation condition, but

each of the seven values was presented on a separate page.

To ensure that participants spent some time processing

these values, they judged whether the numbers of calo-

ries in the set of hamburgers they had seen were surpris-

ing. Participants then completed the distracter task used

in Experiment 1, before they recalled calories. The recall

sheet had seven unlabeled blank slots in which participants

wrote down the calories of the hamburgers they had seen

in the order in which they had seen them. Participants

were instructed to estimate, if they could not recall exact

values.

3.3 Results and discussion

The middle and bottom panes of Table 2 present the mean

recalled numbers of calories, and Figure 6 presents the

mean bias for each stimulus. Consistent with the pre-

dictions of the CA model and the CID model, the small-

est and largest values recalled for the negatively skewed

distribution were significantly larger than were the small-

est and largest values recalled for the positively skewed

distribution. A 2(skew: positive or negative) x 2(pre-

sentation method: simultaneous or sequential) between-

subjects analysis of variance (ANOVA) conducted on the

lowest calorie hamburger found that the recalled value for

the negatively skewed distribution (563.9 calories) was

larger than the recalled value for the positively skewed

distribution (513.8 calories; actual smallest value was 564

calories), F(1,196)= 14.66, p < .01 (this effect held for

Figure 6: Biases observed in Experiment 2 when values

were presented simultaneously (top panel) and when val-

ues were presented sequentially (bottom panel) for posi-

tive skew (open symbols) and negative skew (filled sym-

bols).
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both simultaneous, t(98) = 2.86, p <.01, and sequential

presentation, t(98) = 2.55, p <.05). There was no effect

of the type of presentation on the recall of the smallest

value, F(1,196)=2.38, p > .05, nor an interaction, F(1,196)

= 0.16, p > .05. A parallel ANOVA was conducted on the

highest calorie hamburger, with the recalled value in the

negatively-skewed distribution (906.7 calories) also larger

than the recalled value in the positively-skewed distribu-

tion (872.5 calories; actual largest number was 923 calo-
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ries), F(1,196) = 9.58, p < .01 (this effect held for both

simultaneous, t(98) = 2.05, p < .05, and sequential presen-

tation, t(98) = 2.32, p < .05). Again, there was no effect

of the type of presentation, F(1,196)= 1.16, p > .05, nor

was there an interaction, F(1,196)= 0.14, p > .05. The re-

sults for these two values — the smallest and largest val-

ues in these distributions — are consistent with both the

CA and the CID models and not predicted by the modified

RF model.

Finally, a parallel ANOVA was conducted on the

middle-valued target, 743.5 calorie ½ lb. Big Double

Burger. Consistent with CID and the modified RF model,

but inconsistent with CA, participants recalled more calo-

ries when it was placed in a positively skewed distribution

of values than when it was placed in a negatively skewed

distribution of values, F(1,196) = 71.56, p < .01. This ef-

fect was observed both in the simultaneous-presentation

condition (t(98) = 6.97, p < .01) and in the sequential-

presentation condition (t(98)=5.03, p < .01). There was no

effect of the type of presentation, F(1,196)= 1.70, p>.05,

nor was there an interaction, F(1,196)= 1.54, p>.05. Only

the CID model was able to account for the qualitative bi-

ases observed for both the end values and the middle val-

ues.

4 Modeling the data

In this section we discuss the model fits to the data illus-

trated in Figures 5 and 6. Each of these conditions (i.e.,

Experiment 1, Experiment 2: Simultaneous Presentation,

and Experiment 2: Sequential Presentation) has 14 data

points (7 values from the positive skew and 7 from the

negative skew), making for a total of 52 data points being

modeled. Each model was fit using nonlinear iterative re-

gression with a least squares error term. Parameters were

free to vary across the three conditions so as to maximize

fit. Thus, if a three-parameter model was being fit (i.e.,

both the modified RF model and the CID model were fit

with 3 parameters first), the effective number of parame-

ters was 9, as the three parameters were fit to each condi-

tion. The R2 values reported are based on the fit to the full

set of 52 data points.

CA model fits. The empirical bias patterns of Figures 5

and 6 do not resemble those predicted by the CA model

and shown in Figure 1. When the weighting parameter of

the CA model was constrained to be between 0 and 1 and

the category prototype was constrained to be higher for

the negatively skewed distribution than for the positively-

skewed distribution, the CA model was unable to fit the

data, with an effective R2 = 0. This is because the data

do not show the negatively sloping bias function nor bias

functions that are higher for negative than positive skew-

ing. Thus, although the CA model does a good job mod-

eling remembered values when delay between encoding

and retrieval is quite short (Duffy et al., 2010), it does not

appear capable of explaining the pattern of data obtained

in our experiments that utilized a longer forgetting period

and label cues.

Modified RF model fits. Two versions of the modified

RF model of Equation 4 were fit to the data. The three

parameter version fixed c at 0 so that a accounts for any

assimilative effects at the end stimuli and w accounts for

the basic pattern of data and contrast effects for middle

stimuli. This model resulted in a good fit to the data,

R2 = 0.846 for this 9-parameter model. The fit of this

model is shown in the solid lines of Figure 7 and the pa-

rameter values are shown in Table 3. As seen in Fig-

ure 7, the model captures the general pattern of the data

quite well. The three-parameter range frequency model

fits the assimilative effects at the end-points by weight-

ing the means of the distributions and fits the contrastive

effects for the middle stimuli by the weighting of fre-

quency values. This model constrains the intercepts to

be a function of distribution means. To determine how

much of the misfit is due to this constraint, the global

intercept parameter, c, was then allowed to vary. This

model 12-parameter model fit significantly better than the

9-parameter, R2 = .924 and provided a very good fit to

the data.

CID model fits. In situations in which delay is short, one

might posit the most recent stimulus constitutes the com-

parison stimuli (Choplin & Lombardi, 2010). In this way,

the CID model can generate sequential effects. However,

for the current experimental design, there is no reason to

posit sequential effects. One might argue that on any given

trial each of the other stimuli is likely to serve as a com-

parison stimulus, as assumed in Equation 7. Alternatively,

one might argue that similarity to the target might medi-

ate recruitment of the comparison stimulus. Preliminary

modeling that tested between these two possibilities sup-

ported the former, and so the model of Equation 7 was

fit. This model also did a good job of approximating the

data, R2 = .805, 9-parameter fit. The fit of this model

is shown as dotted lines in Figure 7 and parameter val-

ues are presented in Table 3. Again, the model does a

good job capturing the qualitative pattern of the data. Both

the three-parameter RF and CID models provide a very

close fit to the data of Experiment 1 (left panel of Figure

7). The three-parameter RF model predicts the data from

the simultaneous-presentation condition of Experiment 2

better than the three-parameter CID model (middle panel

of Figure 7), but the reverse is true for the sequential-

presentation condition of Experiment 2 (right panel Fig-

ure 7). The three-parameter CID model constrains the
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Table 3: Model fit statistics.

Model Condition Parameter values R2

RF-3p Experiment 1 a = .66, b = 418, w = .31

Experiment 2 simultaneous a = .75, b = 314, w = .01

Experiment 2 sequential a = .71, b = 359, w = .39 0.846

RF-4p Experiment 1 c = −19, a = .69, b = 418, w = .29

Experiment 2 simultaneous c = 315, a = .32, b = 324, w = .30

Experiment 2 Sequential c = 227, a = .40, b = 366, w = .57 0.924

CID-3p Experiment 1 v = .564, DA = 333, DB = 190

Experiment 2 simultaneous v = .621, DA = 244, DB = 140

Experiment 2 sequential v = .357, DA = 313, DB = 127 0.805

CID-4p Experiment 1 aPOS = −20, v = .564, DA = 330, DB = 192

Experiment 2 simultaneous aPOS = 249, v = .621, DA = 257, DB = 107

Experiment 2 sequential aPOS = 9, v = .357, DA = 315, DB = 125 0.924

Note: Parameter values specified in Equations 3 through 7, RF = Range-frequency, CID = Compar-

ison Induced Distortion, 3p = three parameters, and 4p = four parameters.

Figure 7: Fits of the three-parameter CID and the three-parameter modified RF models to the results of Experiments 1

and 2 for positive skew (open symbols) and negative skew (filled symbols).
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extent of the contrast effect by the extent of the assim-

ilation effect. To determine how much of the misfit is

due to this constraint, an additive constant was included in

Equation 7 for the positive skewing condition, apos. This

12-parameter model is structurally equivalent to the 12-

parameter modified RF model and thus provides an iden-

tical fit, R2 = 0.924. The fit statistics are shown in Table

3.

In summary, model fitting confirmed that the CA model

cannot explain this pattern of data and that the modified

RF and CID models provide good quantitative fits to the

data with three parameters free to vary for each of the three

conditions represented by Figures 4, 5, and 6. The modi-

fied RF model fits the form of the bias functions by assum-

ing that values reflect ranks as described by the frequency

principle of judgment. It fits the assimilative effects on

the end stimuli by adopting an anchoring and adjustment

process similar to the CA model that anchors on the dis-

tribution means but adjusts in proportion to RF value dif-

ferences. The CID model fits both assimilation for the end

stimuli and contrast for the middle stimuli using a com-

mon mechanism, a comparison that is distorted toward the

expected difference. Model fitting demonstrated that when

a fourth parameter is added to the models, the two models

can become equivalent. Because the CID model entails

the two effects, its explanatory power is somewhat greater

when parameters are constrained.
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5 General discussion

Two experiments found patterns of recall that were con-

sistent with the predictions of the modified RF model and

with the predictions of the CID model, but that were in-

consistent with the CA model. In Experiment 1, hamburg-

ers and their associated caloric values were presented si-

multaneously in either an ascending or a descending order.

In Experiment 2, hamburgers and their associated caloric

values were presented in random orders wherein the seven

hamburgers were presented either simultaneously on the

same page or sequentially on seven separate pages. Af-

ter they were given a distracter task, participants recalled

these values from memory using the hamburger labels as

retrieval cues.

Both the modified RF model and the CID model fit

the data equally well, but the CID model has the advan-

tage that it entails the qualitative finding that the smallest

and largest values recalled for the negatively skewed dis-

tribution were significantly larger than were the smallest

and largest values recalled for the positively skewed dis-

tribution. Furthermore, other extant models of density ef-

fects on evaluation typically are not designed to predict

density effects on recall (i.e., Baird, 1997; Haubensak,

1992; Stewart & Brown, 2004; Stewart et al., 2006; Petrov

& Anderson, 2005), making the predictions of the CID

model somewhat unique.

The results of Experiments 1 and 2 most likely dif-

fered from the results reported by Duffy et al. (2010) be-

cause memory was taxed (Wedell, 1996) and participants

had associated labels with each of the to-be-recalled at-

tribute values (Pettibone & Wedell, 2007a). Similar mem-

ory effects wherein relational information later biases re-

call have been reported in the stereotype literature (Hig-

gins & Lurie, 1983). In the experiments reported by Duffy

et al., there was only a 1 second delay so fine-grain in-

formation was likely highly accessible and participants

only recalled one item. By contrast, there was a much

longer delay in the current experiments and participants

recalled seven values. Duffy et al. (2010) also used ana-

log visual stimuli, rather than the numerical stimuli used

here. The conditions in the experiments reported here may

better reflect many real-life decision-making situations,

as home-purchase decisions might depend upon recall of

room sizes, automobile-purchase decisions upon recall of

mileage, and dietary decisions upon recall of calories and

fat content. In such situations, consumers have to make

decisions despite a variety of distractions and after a long

delay, and they may use labels to recall product attribute

values (e.g., the second home we saw, the green car, the ¼

lb. Burger).

Duffy et al. (2010) argued that their results demon-

strated that comparisons to preceding values presented in a

sequence affected recall of the to-be-judged stimulus only

to the extent that the preceding stimulus changed the mean

of the category. Language-based pairwise comparisons

were not supposed to play a role. It is important to point

out that the CID model predicts effects of the preceding

stimulus only if and when the to-be-judged stimulus is ver-

bally compared to the preceding stimulus. The paradigm

used by Duffy et al. might have made such verbal compar-

isons unlikely. Other paradigms and real-life situations

might make verbal comparisons more likely. More re-

search will be needed before it is possible to conclude that

comparisons to preceding values presented affected recall

only to the extent that the preceding stimulus changed the

mean of the category. Further, the density effects found in

the present experiments clearly indicate that distributional

information other than the mean (i.e., the relative densi-

ties) is affecting recall.

Experiments 1 and 2 used unimodal, positively and neg-

atively skewed distributions. Yet all three of the models

presented here — the CA model, the modified RF model,

and the CID model — make predictions about recall of

values from other distributions such as normal, uniform,

and u-shaped distributions. The CA model predicts that

recall will be biased towards the means of the relevant cat-

egory or categories. The modified RF model predicts that

recall will reflect percentile rankings such that differences

between stimulus values will be greater in dense than in

sparse regions. The CID model predicts that pairwise, ver-

bal comparisons between values will tend to bias recall to-

wards more uniform differences between values, pushing

memory for values in dense regions towards sparse regions

and creating a predictable pattern of assimilation and con-

trast effects on recall. Future research should investigate

effects of factors such as different distributions, the length

of the delay, the number of items recalled, the stimuli used

(e.g., visual versus numerical stimuli), and whether items

are given labels are likely to affect the patterns of bias one

observes and further distinguish among these models.

The results presented here have important implications

for consumer choice. Much of the research that has stud-

ied the effects of density on decision making has pre-

sented options to participants and participants make de-

cisions while the options remain in view (e.g., Pettibone

& Wedell, 2000; Wedell & Pettibone, 1996). The find-

ing that the smallest and largest values in Experiments 1

and 2 were recalled significantly larger when they were

drawn from the negatively-skewed distribution than when

they were drawn from the positively-skewed distribution

and the fact that this effect was not observed in previ-

ous research on attribute evaluation suggests that there

could be situations wherein the effects of density on de-

cisions might differ if consumers make decisions while

the options remain in view than if consumers make de-

cisions after a delay. Based on the research reported here,

we believe that decisions about a host of everyday con-
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sumer purchases (food, household items, etc.) may dif-

fer when recalling attributes from memory versus when

viewing the attribute listing directly. Given the contextual

nature of choice, it is also possible that effects like the

asymmetric dominance effect (Choplin & Hummel, 2002,

2005) and the phantom decoy effect (Pettibone & Wedell,

2007b) might be stronger after a delay than when the op-

tions remain in view. Judgments of body sizes could also

differ if items remain in view or are judged from mem-

ory (Choplin, 2010) as could other social comparisons

(Bloomfield & Choplin 2011; Pettibone & Wedell, 2007a).

Future research should pursue these questions to investi-

gate whether judgments and decisions made immediately

differ from decisions made after a delay.

The results presented here have specific implications

for recent efforts to post nutritional information such as

caloric content in restaurants and on menus. Previous

research on category rating evaluations would have sug-

gested that menus with positively skewed distributions of

caloric content (i.e., menus with many reduced-calorie op-

tions and only a few highly caloric options) would lead

to portions being judged more caloric, which could have

in some circumstances led consumers to be more careful.

This pattern of results could have led health promoters to

advocate for the adoption of menus with positively skewed

distributions of caloric content. The current results sug-

gest that such a policy could very well be effective as the

medium-sized, 743.5-calorie 1/2 lb. Big Double Burger

was recalled as larger in the positively skewed distribu-

tion than in the negatively skewed distribution. However,

the current results also suggest a boundary conditions on

this generalization as the opposite pattern was observed

for the small 564.0-calorie 1/4 lb. Burger and the large

923.0-calorie 2/3 lb. Monster Double Burger. The adop-

tion of such a menu, then, could backfire for extremely

small and extremely large items on the menu. Consumers

could start eating extraordinary amounts of the reduced-

calorie items and could underestimate the harm cause by

the most extreme highly caloric options. These effects are

likely to be particularly strong as these types of dietary de-

cisions are typically highly reliant on memory. In applying

these findings to real-world implications for the design of

menus and food presentation, it will be important to clar-

ify the boundary conditions under which these memory

effects occur and how they affect actual dietary decisions.
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