
There is abundant evidence that spatial information is 
coded in memory at both a fine-grain level that reflects 
coordinate-like memory and a coarser, categorical level 
that reflects how the space is partitioned (Huttenlocher, 
Hedges, & Duncan, 1991; Spencer & Hund, 2002). One 
way these two representations may be related is that the 
frame of reference guiding the orientation of coordinate 
memory may determine the categorization scheme. A 
viewer-based frame of reference implies partitioning the 
space into categories reflecting left–right, up–down, and 
front–back directions. A cue-based frame of reference im-
plies categories centered on salient landmarks, such as 
when one describes a car as being close to a clock tower. 
A shape-based frame of reference implies categories that 
reflect a natural partitioning of the geometric shape of the 
environment, such as when one describes a point as being 
in the lower-left corner of a rectangle. The focus of the 
present research was to determine how simple manipu-
lations of shape may influence the categorical encoding 
of spatial information in memory. The participants re-
produced point locations within different shapes, and we 
modeled the bias in their estimates. Before describing our 
predictions, we first explain how shape may be used to 
develop a categorical representation of the spatial field, 
and then describe the modeling procedures we used for 
inferring that categorical representation.

It seems likely that geometric features of the environ-
ment may be used to determine spatial categories that 
serve to encode spatial locations. This supposition is bol-
stered by studies with animals and young toddlers, which 
have demonstrated a tendency for spatial localization to 
be based primarily on geometric features of the environ-
ment, largely ignoring environmental cues (Cheng, 1986; 
Hermer & Spelke, 1994). Huttenlocher et al. (1991) pro-
vided evidence that when locating a dot in a circular field, 

individuals tend to bias their estimates toward a central 
location within the quadrant in which the dot appeared. 
According to their category-adjustment model, spatial-
location information is coded at a fine-grain level, which 
corresponds to its exact location within a coordinate sys-
tem, and at a categorical level, which indicates into which 
quadrant the dot falls. As uncertainty about the location 
coded in fine-grain memory grows, the individual increas-
ingly relies on categorical memory, so that estimates are 
biased toward the category prototype, which is assumed 
to be a centrally located value within the spatial category.

Extant research, however, has not yet determined how 
the category structure may depend on the geometric prop-
erties of the task field in this simple spatial-location task. 
Under the assumption that prototypes represent the central 
tendency of a geometric category, one would expect that 
stretching the geometric figure along vertical or horizon-
tal axes should have a similar effect on the locations of 
category prototypes; that is, their locations along the axis 
of elongation will shift accordingly. On the other hand, 
if category prototypes are primarily determined by loca-
tions of targets within the field, which constitute exemplar 
information, then stretching the geometric figure should 
have no effect on locations of prototypes, as long as the 
distribution of target locations remains fixed.

We tested for the influence of shape on locations of 
prototypes using the six shapes shown in Figure 1, along 
with the locations of the 32 targets used for each shape. 
The circle and square shapes have been most extensively 
utilized and studied in the dot-location experimental para-
digm (e.g., Fitting, Wedell, & Allen, 2005; Huttenlocher 
et al., 1991; Spencer & Hund, 2002). We transformed the 
circular shape along horizontal or vertical axes to create 
two different elliptical task fields. If prototypes are cen-
trally located within a geometric region, then we would 
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expect prototypes to have more extreme locations along 
the x-axis for the horizontal ellipse and more extreme lo-
cations along the y-axis for the vertical ellipse, in com-
parison with the prototype locations for the circle. On 
the other hand, if prototypes represent central tendencies 
within the distribution of target exemplars, no shifts in 
prototypes would be expected.

One group of participants made estimates of the 32 tar-
gets for each of the three curved shapes (left column of 
Figure 1) as a within-subjects test of the effects of stretch-
ing a figure along horizontal or vertical axes. The other 
group estimated spatial locations of the 32 targets for each 
of the three angular shapes (square, triangle, and penta-
gon) shown in the right column of Figure 1. Although 
there is some elongation of shapes in this condition, in 
that the base of the triangle is much wider than the bases 
of the square or pentagon, the primary purpose of this ma-
nipulation was to see whether number of prototypes might 
depend on number of corners or sides presented within the 
shape. If participants use an object-based, or allocentric, 
frame of reference, then the quadrant representation that 

is typically found for the square task field may be due 
to the four corners of the configuration supporting four 
spatial categories. If so, one would expect that the three 
corners of the triangle would support three spatial proto-
types, and the five corners of the pentagon would support 
five spatial prototypes. On the other hand, Fitting et al. 
(2005) have speculated that the four prototypes typically 
found in this task arise from a viewer-centered frame of 
reference. From the viewer’s perspective, the dot locations 
may be coded as up or down and right or left, combining 
into four spatial categories or regions. If spatial catego-
ries are viewer based, one would not expect increases in 
the number of prototypes with increases in the number of 
corners or edges of the shape. Rather, one would predict 
four prototypes for all six shapes shown in Figure 1, but 
with the locations of these prototypes likely influenced by 
elongation along the different axes.

The predictions we have described all concern how 
shape influences spatial category prototypes, either in 
their number or their locations. However, prototypes are 
not directly observed; rather, they are inferred from the 
pattern of bias in estimation. Our model for inferring pro-
totype locations builds on the category-adjustment model 
of Huttenlocher et al. (1991), but deviates from it in some 
particulars. First, we adopt a fuzzy-boundary version of 
the model, similar to those versions described by Haun, 
Allen, and Wedell (2005) for angular bias in azimuth and 
elevation and by Fitting et al. (2005) for angular bias in 
the dot-location task. The fuzzy-boundary concept de-
rives from the finding that locations near the border of 
two categories often show attenuated bias relative to what 
is predicted by the sharp-boundary model of Huttenlocher 
et al. (1991). The fuzzy boundaries account for this at-
tenuation by assuming that prototypes are recruited on the 
basis of proximity of the target to the prototype. Locations 
near the boundary tend to recruit more than one prototype; 
the influences of these different prototypes tend to offset, 
resulting in reduced bias near the borders. A second way 
in which the model we used differed from previous mod-
els is that rather than adopt polar coordinates, we apply 
the model directly to the x- and y-coordinates. There were 
three primary reasons for this choice. First, fitting the 
polar coordinates requires separate fits for angular bias 
(in degrees) and radial bias (in pixels), whereas fitting the 
Cartesian coordinates allows for a simultaneous fit of the 
two dimensions (x and y). Second, if the expected shifts in 
prototypes with elongation occur, then fitting radial bias 
becomes quite complex, because it depends on angular 
location. Finally, the polar coordinate approach implies 
greater error variance for longer radius targets, but this 
effect on variance was not observed.

Our basic model describes the mean response for 
stimulus i along dimension m as a weighted average of 
the actual location on that dimension (assumed to be the 
mean of the fine-grain memory representation) and the 
weighted sum of prototype locations along that dimen-
sion, as follows:

	 Rim 5 wSim 1 (1 2 w)ΣrijPjm,	 (1)

Figure 1. The six different shapes of the task fields used, along 
with the 32 dot locations for each. Crosses indicate inferred lo-
cations of category prototypes for each shape, generated from 
model fits to the data (see Discussion).
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where Rim is the mean response for location i on dimen-
sion m, w is the relative weight of fine-grain memory, Sim 
is the actual stimulus location on dimension m (which 
takes two values in this case, x and y), Pjm is the location of 
prototype j on dimension m, and rij is the relevance weight 
of prototype j for stimulus i. Note that the fuzzy-boundary 
notion is captured by intermediate relevance weightings 
of prototypes, so that there may be more than one relevant 
prototype, especially as the target approaches the border 
between adjacent categories. In our model, relevance 
weighting is based on the similarity of the location to the 
prototype, where similarity is assumed to be a negative 
exponential function of Euclidean distance:
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where c is a sensitivity parameter that indicates how sharp 
the boundaries are and rij indicates the proportionate influ-
ence of Pj on the estimate of stimulus i, prior to weighting 
by (1 2 w). Our modeling strategy was to combine Equa-
tions 1 and 2 and fit the x and y responses simultaneously 
after placing different constraints on number and loca-
tions of prototypes. To examine the goodness of fit of the 
model, we use the predicted values to residualize the re-
sponses and determine whether the key significant effects 
from the ANOVA are reduced or rendered nonsignificant 
once model predictions are taken into account. We also 
evaluated whether additional parameters significantly in-
creased the variance explained for nested models.

Method

Participants and Design
A total of 40 undergraduate students from the University of South 

Carolina voluntarily participated in the experiment and received 
course credit for participation. Half were randomly assigned to the 
rounded shape condition and half to the angular shape condition.

In addition to the between-subjects variable of shape condition, 
five variables were manipulated within participants. The first of these 
was shape, manipulated at three levels: circle, horizontal ellipse, and 
vertical ellipse for the rounded set; and square, triangle, and penta-
gon for the angular set. The factorial combination of three variables, 
quadrant (4), radius (2, short and long), and angle (4), created the 32 
targets presented for each shape. The final within-subjects variable 
was replication (2 replicates of each). The dependent variables were 
the x- and y-coordinates of the location estimates, in pixels.

Stimuli and Apparatus
Microprocessors with 17-in. screens were used to present all of 

the experimental materials, with graphics presented in a 640 3 
480 pixel array. As shown in Figure 1, 32 target locations were pre-
sented for each shape, with locations generated from a polar coor-
dinate system. Half of the targets were located at a short radius of 
63 pixels and half at a long radius of 114 pixels. In each quadrant, 
targets were located at angles of 3º, 25º, 43º, and 75º. Dots marking 
the locations of targets, 4 pixels in diameter, were drawn in red. The 
areas of the shapes, in pixels, were as follows: circle, 61,575; ellipse, 
91,232; square, 68,644; triangle, 76,590; and pentagon, 40,900. The 

key determinant of the size of the shapes was that it must accommo-
date the 32 target locations fairly closely within its borders.

Procedure
Groups of 1–5 participants were tested in a laboratory room, with 

computers spaced approximately 1 m apart. After reading general 
instructions, the participants were presented 3 demonstration tri-
als, 1 for each of the three different shapes. Demonstration trials 
included feedback indicating the actual location. These were fol-
lowed by 6 practice trials, 2 for each shape, with no feedback given, 
and then 192 randomly ordered experimental trials, in which the 32 
targets for each of the three shapes were presented twice.

Each trial began with a 1-sec “ready” prompt followed by a 1.5-
sec blank screen. The target dot was then presented for 1 sec on the 
screen inside the white task field for the given shape, with the rest 
of the screen in black. This was followed by a 4.5-sec dynamic gray-
and-white checkerboard mask, contoured to the shape. The checker-
board consisted of squares (10 pixels wide), and the pattern shifted 
alternatively left and right by 10 pixels every 250 msec, to interfere 
with eye fixations. After the mask, a crosshair cursor appeared at 
the center of the white task field for the given shape. The participant 
moved the crosshairs using the mouse and clicked a mouse button to 
indicate the dot location.

Results

The x- and y-coordinates of the reproduced dot loca-
tions, averaged across replicates, constituted the dependent 
variable. An observed value was designated an outlier if 
its x-value or y-value was more than 2 SDs from the mean 
of responses for that location and shape condition. If both 
replicates of a point for a given participant were deemed 
outliers, we replaced the missing data point by the mean of 
the remaining values for the specific dot location within 
that condition. Less than 1% of data points were replaced.

To determine whether shape leads to systematic devia-
tions of estimates from actual locations, we conducted 
separate repeated measures ANOVAs on bias scores for the 
two shape sets. We calculated bias scores by subtracting 
the actual x- or y-value from the corresponding response. 
The within-subjects variables in each 2 3 3 3 4 3 4 3 2 
analysis were dimension, shape, quadrant, angle, and ra-
dius. Given the large number of tests and the replacement 
of some of the data by means, we adopted an alpha of .01 
as a significance criterion.

Because the main focus of these studies was the influ-
ence of shape, we report only on the significant interac-
tions involving shape. For the ANOVA on rounded shapes, 
there were five such significant interactions: shape 3 
quadrant [F(6,114) 5 35.1]; shape 3 dimension 3 
quadrant [F(6,114) 5 37.3]; shape 3 quadrant 3 angle 
[F(18,342) 5 8.2]; shape 3 dimension 3 radius 3 quad-
rant [F(6,114) 5 4.7]; and shape 3 dimension 3 quad-
rant 3 angle [F(18,342) 5 7.4]. For the ANOVA on an-
gular shapes, there were four such significant interactions: 
shape 3 quadrant [F(6,114) 5 11.0]; shape 3 dimen-
sion 3 quadrant [F(6,114) 5 21.6]; shape 3 quadrant 3 
angle [F(18,342) 5 4.8]; and shape 3 dimension 3 quad-
rant 3 angle [F(18,342) 5 5.7].

To better understand this complex set of interactions, 
we modeled the data for the rounded shape and angular 
shape conditions separately, using Equations 1 and 2 with 
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various constraints on parameters. Because our goal was 
to provide a parsimonious account of the data, we began 
with highly constrained versions of the model and freed up 
parameter constraints when it aided in predicting bias. To 
provide a statistical evaluation of the utility of the model, 
we subtracted bias values predicted by the model from 
participants’ data and conducted an ANOVA on these re-
siduals. A useful model would provide a parsimonious ac-
count of the data and eliminate or strongly reduce the key 
interactions with shape.

Figure 2 presents the actual dot locations, the mean 
responses of participants, and model predictions of re-
sponses. In a series of simultaneous fits to the three 

rounded shapes, an 11-parameter model was found to 
explain the data well; parameter values are presented in 
Table 1. This model estimated the four prototype locations 
for each shape under several constraints. The first was that 
vertical and horizontal symmetry applied to prototype lo-
cations. Accordingly, a single value of x was used for the 
two leftmost prototypes and a single value of x was used 
for the two rightmost prototypes in the circle condition. 
Likewise, a single value of y was used for the two top-
most prototypes and a single value of y was used for the 
two bottommost prototypes for the circle. Thus, the four 
prototypes of the circle condition were described by just 
four parameters. For the horizontal ellipse, the y-values of 

Figure 2. Comparison of estimated locations, actual locations, and model-predicted 
locations as a function of shape of task field. The small filled circles represent the ac-
tual dot locations, the large open circles represent the mean of estimated locations by 
participants, and the Xs represent the model-predicted locations.
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the prototypes were constrained to be equal to the y-values 
for the corresponding prototypes of the circle, but two ad-
ditional x-values were estimated (one for leftmost proto-
types and one for rightmost prototypes). For the vertical 
ellipse, the x-values of the prototypes were constrained 
to be equal to the x-values for the corresponding proto-
types in the circle condition, but two additional y-values 
were estimated for topmost and bottommost prototypes. 
We modeled prototype recruitment using Equation 2, 
with only one estimated parameter (c). In fitting this por-
tion of the model, we found that the best fit was achieved 
by using the circle prototype values for all three shape 
conditions. Finally, we estimated two values of the fine-
grain weighting parameter (w), one for the circle and one 
for the two ellipses. When this 11-parameter model was 
fit to the 192 data points, the explained variance in bias 
scores was quite high (R2 5 .833). When residuals from 
this model were entered into an ANOVA, three of the five 
significant interactions with shape were rendered nonsig-
nificant, including the two largest interactions (Fs . 30). 
The remaining three-way and four-way interactions were 
reduced in magnitude by more than one half. Thus, the 
analysis of residuals implies that the model provided a 
good account of the differences in bias resulting from the 
shape manipulation in the rounded shape condition.

In a series of simultaneous fits to the three angular shape 
conditions, a 10-parameter model was found to explain 
the data well; parameter values are presented in Table 2. In 
this model, four prototype locations for each shape were 
estimated under several constraints. For the square shape, 
vertical and horizontal symmetry constraints were again 
applied to prototype locations. Thus, only four parameters 
were needed to model the four prototypes for the square. 
The horizontal symmetry constraint was not applied to 
the triangle condition, because the elongation along the 
base implied that x-values for the two lower prototypes 

would be more extreme than for the two upper prototypes. 
Similar possible problems applied to the pentagon shape. 
Hence, in these conditions, x- and y-values were originally 
left free to vary and only constrained when the drop in 
R2 was not significant. As it turned out, the x-values for 
all four prototypes in the triangle condition were free to 
vary, but the y-values were constrained to be equal to cor-
responding y-values from the square condition. The penta-
gon shape required no new free parameters for the inferred 
x-values, with two constrained to be equal to values from 
the square condition and two to values from the triangle 
condition. The prototype recruitment was modeled using 
Equation 2, with only one estimated parameter (c). Once 
again, in fitting this portion of the model, it was found that 
the best fit was achieved by using the square prototype 
values for all three shape conditions. Finally, one value 
of the fine-grain weighting parameter (w) was estimated 
for all three shapes. When this 10-parameter model was 
fit to the 192 data points, the explained variance in bias 
scores was moderately high (R2 5 .691). Finally, when 
residuals from this model were entered into an ANOVA, 
the two largest interactions were rendered nonsignificant, 
and the other two were reduced but still significant. Thus, 
the model provided a reasonable account of the largest 
differences in bias resulting from the shape manipulation 
in the angular shape condition.

Table 3 presents an analysis of how the reported models 
fared against models with different prototype constraints. 
For the rounded shapes, one critical issue is whether the 
constraints on x- and y-values were reasonable. As shown 
in Table 3, the increment in R2 for the less constrained 
model was minimal and nonsignificant, despite the large 
increase in number of parameters. Two competing models 
are relevant for the angular shapes. As shown in Table 3, 
a model that uses just three prototypes for the triangle re-
duces R2 significantly, indicating the need for a fourth pro-

Table 1 
Parameter Values for 11-Parameter Model Fit to Rounded Shape Conditions

Shape  w  c  x1  y1  x2  y2  x3  y3  x4  y4

Circle 0.796 0.055 296 154 161 154 161 305 296 305

Horizontal
  ellipse 0.873 0.055 343 154   62 154   62 305 343 305

Vertical
  ellipse 0.873 0.055 296 105 161 105 161 370 296 370

Note—w, fine-grain weighting parameter (Equation 1); c, sensitivity parameter (Equa-
tion 2); x, horizontal value (increasing left to right); y, vertical value (increasing top to 
bottom); subscripts for x and y indicate which prototype they refer to; boldfaced values are 
free to vary; italicized values were constrained to be equal to a boldfaced value.

Table 2 
Parameter Values for the 10-Parameter Model Fit to Angular Shape Conditions

Shape  w  c  x1  y1  x2  y2  x3  y3  x4  y4

Square 0.881 0.045 325 133 140 133 140 319 325 319
Triangle 0.881 0.045 284 133 127 133   46 319 362 319
Pentagon 0.881 0.045 284 133 140 133 140 319 284 319

Note—w, fine-grain weighting parameter (Equation 1); c, sensitivity parameter (Equa-
tion 2); x, horizontal value (increasing left to right); y, vertical value (increasing top to 
bottom); subscripts for x and y indicate which prototype they refer to; boldfaced values 
are free to vary; italicized values were constrained to be equal to a boldfaced value.
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totype. Also illustrated is a nonsignificant increment in R2 
for a model in which an additional prototype was fit to the 
pentagon condition, supportive of the four-prototype model 
in this condition. These supplemental analyses provide ad-
ditional support for the models described in Tables 1 and 2.

Discussion

Our experimental results were consistent with the idea 
that the shape of the surrounding task field can bias esti-
mation through systematic shifts of geometrically based 
category prototypes. Because the set of targets for each 
shape was exactly the same, these effects cannot be at-
tributed to changes in the target distribution. To clarify the 
bases for these effects, Figure 1 superimposes the proto-
type values inferred from our modeling (see Tables 1 and 
2) onto the shapes we used. For the rounded shapes, the 
inferred prototype locations showed a close correspon-
dence to the relative elongation along the x- and y-axes. 
The prototype locations inferred for the circle were con-
sistent with previous research (Huttenlocher et al., 1991). 
Widening the shape by creating a horizontal ellipse re-
sulted in large shifts of the prototype locations along the 
x-axis to reflect the extremity of the spatial configuration 
along this axis. However, modeling demonstrated that the 
y-coordinates for the prototypes did not shift relative to 
those for the circle. Corresponding conclusions apply to 
prototype locations within the vertical ellipse.

The angular shape manipulation shows a similar ten-
dency of prototypes to shift with elongation along the x-
axis. This was most notable when comparing x-values of 
inferred prototypes along the base of the triangle to those 
along the top of the triangle. A focus of the angular ma-
nipulation was to determine whether the number of proto-
types might change with spatial configuration, consistent 
with an object-based orientation. However, there was no 
advantage to modeling a fifth prototype for the pentagon 
frame, and there was a distinct disadvantage to model-
ing only three prototypes for the triangle frame. The re-
sults were more consistent with the use of a viewer-based 
frame of reference, according to which the left–right and 
up–down distinctions constitute the bases for creating spa-
tial categories. In general, prototype locations in Figure 1 
exhibit a leftward bias relative to the center of the shape. 
We believe this may be tied to a general leftward response 
bias, perhaps due to the use of the mouse for responding. 

Because our focus was on the number and relative loca-
tions of prototypes, we did not pursue alternative ways to 
model this leftward bias, but instead let it be reflected in 
the prototype locations.

The regularity of these results and the applicability 
of modeling procedures imply that several related ques-
tions could be successfully investigated using these pro-
cedures. For example, what would happen if the ellipse 
had its major diagonal along the 45º axis? Predictions 
would differ based on frame of reference (viewer based 
or object based), and these could be tested using model-
ing procedures. Because Fitting et al. (2005) found that 
the viewer-based frame of reference was abandoned for a 
cue-based frame of reference when the shape was rotated 
on a majority of trials, we suspect that a similar shift to an 
object-based frame of reference might be found if the ori-
entation to the shape was systematically varied. Manipula-
tion of the complexity of the figures might also be very 
important, because distinct “corridors” or “rooms” would 
likely lead to a more object-based frame of reference and 
consequent changes in number and location of prototypes. 
Such questions are amenable to experimental exploration 
using these types of modeling procedures.
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Table 3 
Comparison of Model Fits

Shape
Condition  R2  Parameters  Description

Rounded .833 11 Base model of Table 1 with four prototypes
Rounded .857 27 Base model nested within this model with four prototypes but no constraints on x- and y-values
Angular .692 12 Base model of Table 2 with four prototypes and two added parameters
Angular .680 11 Nested-within-base model with three prototypes for triangle
Angular .701 14 Base model nested within this model with five prototypes for pentagon

Note—R2 values reflect the proportion of variance in bias explained by the given model; F tests based on the change in R2 from the 
base model showed no significant increment in variance explained for any of the alternative models and a significant decrement for 
the model that included only three prototypes for the triangle condition; the base model for the angular data added two nonsignificant 
parameters to the one reported in the text in order to achieve proper nesting of models for statistical tests.


