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Abstract

Participants maneuvered a rat image through a circular region on the computer screen to find a

hidden target platform, blending aspects of two well-known spatial tasks. Like the Morris water maze

task, participants first experienced a series of learning trials before having to navigate to the hidden

target platform from different locations and orientations. Like the dot-location task, they determined

the location of a position within a two-dimensional circular region. This procedure provided a way to

examine how the number of surrounding cues (1, 2, or 3) affects the memory for spatial location in

navigation. Memory performance was better when there were more cues and when targets were close

to cues, consistent with the idea that cues bolster fine-grain memory, especially in proximal regions.

Early and late measures of bias in memory reflected biases in a direction toward the nearest cue,

implicating a cue-based category structure of the navigational space. Collectively, results suggest

cue-based spatial memory representations that have been inferred from the dot-location task general-

ize to a navigation task within a simple, computer-based environment, as demonstrated by the good

fits of the spatial model developed for the dot-location task (Fitting, Wedell, & Allen, 2005, 2007).

Keywords: Navigation; Spatial memory; Spatial reorientation; Mental rotation; Two-dimensional

environment; Bias; Categorical coding; Spatial categories

1. Introduction

Spatial memory for object location has been studied extensively in various ways

and across a variety of species (Morris & Parslow, 2004; Nadel, 1990; Newcombe &

Huttenlocher, 2000). One simple experimental paradigm used to study spatial memory in
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humans is the dot-location task, which requires participants to indicate remembered loca-

tions of dots within a circular task field (Fitting, Wedell, et al., 2007; Huttenlocher, Hedges,

& Duncan, 1991). Although memory for location in this task is generally very good, the

observed biases in estimation have provided insights into the underlying spatial memory

representation. The dot-location task has proven a successful aid in understanding spatial

memory, but it is a very simple task and typically tests memory within seconds of learning

the target location so that long-term spatial memory is not evaluated (for some exceptions to

this, see Fitting, Allen, & Wedell, 2007; Hund & Plumert, 2002, 2005). Further, it evaluates

memory for location at a single time point and thereby does not reflect the dynamically

changing situation found in spatial navigation tasks.

In the research reported here, we incorporated a navigational component into the dot-

location task that enables us to consider how spatial memory representations may change as

one progresses toward the target location. Because our task is mapped onto a small two-

dimensional computer display, the generality of the findings will be limited to navigation in

small spaces over brief time periods. However, we believe this work provides an important

conceptual link to the navigation literature and, in particular, to the well-known Morris

water maze task (Morris & Parslow, 2004), which is typically used to study spatial memory

in animals. We will first briefly review the literature relevant to the dot-location task, then

describe how we incorporated features of the Morris water maze task, and finally describe

details of our adapted task, relevant measures, and the hypotheses that we will test.

1.1. The dot-location task

The dot-location task provided the impetus for the development of the category-adjust-

ment model by Huttenlocher and colleagues (Huttenlocher, Hedges, Corrigan, & Crawford,

2004; Huttenlocher et al., 1991; Huttenlocher, Hedges, Lourenco, Crawford, & Corrigan,

2007). This model gives a compelling theoretical account of how biases arise in spatial rep-

resentations. It is based on the idea that memory for spatial location is encoded at two levels:

a fragile and briefly enduring fine-grain level that reflects analog veridical information, and

a more robust categorical level that represents coarser and more discrete information.

According to the category-adjustment model, bias in estimation results from the use of cate-

gory prototypes to resolve uncertainty about fine-grain information, so that remembered

locations shift toward the nearest prototype location. Although use of these categorical

codes may bias estimates, they also serve the adaptive purpose of reducing the overall error

in estimation. When the task field is circular, the fine-grain coordinate system is typically

defined by polar coordinates and categories are typically defined by the four quadrants

resulting from the imposition of vertical and horizontal axes onto the spatial environment.

These quadrant-based categories are represented by category prototypes. Because exact

memory of the location (fine-grain memory) fades rapidly, biases occur through the recruit-

ment of category information that results in estimations being driven toward the central

location of each category, or the category prototype.

Numerous studies have investigated how prototype locations are determined. Different

factors have been hypothesized to influence the category structure, such as the distribution
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of spatial locations (Crawford, Margolies, Drake, & Murphy, 2006; Hund & Plumert, 2003;

Spencer & Hund, 2002), or the geometric configuration of the task field (Wedell, Fitting, &

Allen, 2007). A very influential determinant of the number and locations of prototypes that

our current study builds on is the set of external cues located around the task field. In our

recently reported experiments in this area (Fitting, Wedell, et al., 2007; Fitting, Wedell, &

Allen, 2008a, 2008b), participants reproduced the location of a dot in a circular region under

conditions that varied the number and locations of cues placed along the perimeter of the

task field. Results indicated that the category structure used to encode spatial location was

highly dependent on the stability of one’s orientation to the task field. When orientation was

stable, the default four-quadrant category structure found in the Huttenlocher et al.’s (1991)

study was used. This result held up even when the number of cues was increased dramati-

cally (Fitting et al., 2008b). However, when orientation to the task field was shifted on a

majority of trials, a cue-based category structure was adopted, in which available peripheral

cues helped to define spatial prototypes used in locating the object. This cue dependence

was reflected in the occurrence of very different patterns of bias for different cue conditions,

with these patterns well described by our flexible fuzzy-boundary model (see Fitting,

Wedell, et al., 2007; Fitting et al., 2008a). Our model was developed as an extension of

Huttenlocher et al.’s (1991) category-adjustment model, with modifications that allow for

inference of the number and locations of prototypes and how prototypes are recruited. In

addition to bias effects on remembered location, we also observed strong cue effects on

absolute memory error, consistent with the idea that cues serve to bolster the fine-grain

information in regions proximal to the cue. Thus, the upshot of our recent research is that

external cues may be very important in determining spatial categories in sparse and dynami-

cally changing environments, such as when one navigates through a vista space, such as an

arena, or even within a small spatial display on a computer screen.

We adapt our previous modeling methods for determining cue effects on spatial memory

representations in the dot-location task to the navigation task we describe in the next

section. Our modeling derives from four basic equations, which we present here using gen-

eral terminology so that the reader can easily see the basis of the model. Specific adaptations

of these equations are described in the Results section.

First, following Huttenlocher et al. (1991), we conceive of the participant’s estimation of

a given spatial location as a weighted average of two memory components, fine-grain mem-

ory and categorical memory, as represented by spatial prototypes. This basic relationship is

described as follows:

Estimate ¼ kðFine-grain memory locationÞ þ ð1� kÞðRelevant prototypeÞ; ð1Þ

where k represents the relative weight of the fine-grain information. Within this framework,

the fine-grain memory location is presumed to be unbiased but fragile and k is assumed to

decrease as memory for fine-grain information degrades.

The second equation derives from the first but focuses on bias, which is calculated by

subtracting the actual location coordinates from the estimated location coordinates. The

coordinate system used in modeling the data can be polar coordinates (Fitting, Wedell et al.,

2007), in which case our primary concern is with angular bias and secondarily with radial
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bias, or it can be Cartesian coordinates (Wedell et al., 2007). Both of these representations

are used in the current research. However, using general terminology, bias is predicted from

Eq. 1 as follows:

Bias ¼ ½kðFine-grainmemory locationÞ þ ð1� kÞðRelevant prototypeÞ�
�Actual location:

ð2Þ

Inboth equations, we refer to the relevant prototype. A feature of the flexible fuzzy-

boundary model is that it allows for the probabilistic recruitment of different prototypes

that may influence the bias. The basic idea is that the relevance of a given prototype is

based on the proximity of the target location to the different prototypes. One conse-

quence of this recruitment is that targets located near a border between two prototypes

will tend to recruit both and hence have greatly diminished bias relative to that

predicted by the standard category-adjustment model. Thus, relevance weighting is

determined as follows:

Relevance of prototype ¼ Proximity ðTarget, PrototypeÞP
Proximity ðTarget, PrototypesÞ : ð3Þ

We have typically used an exponential decay function to describe proximity either using

polar coordinates (Fitting, Wedell, et al., 2007; Fitting et al., 2008a, 2008b) or Cartesian

coordinates (Wedell et al., 2007).

Finally, we have found it useful to model the error in fine-grain memory as a function of

the distance from the target location to the cue locations (Fitting, Wedell, et al., 2007;

Fitting et al., 2008a, 2008b). Although it is difficult to obtain a pure measure of fine-grain

error, much of the variation in absolute error (i.e., the unsigned distance from estimate to

actual location) is based on this source of error. The general form of the equation we use to

model these error measures is as follows:

Fine-grainmemory error ¼ Baseline errorþ b ðDistance to closest cuesÞ; ð4Þ

where b indexes the additional error resulting from being located away from cues.

The closeness of cues can be modeled using relevance weighting like that shown in

Eq. 3. Note that Eq. 4 has two fundamental implications. First, it predicts that error

will be decreased for targets located near cues. Second, it predicts that increasing the

number of cues will reduce fine-grain error because targets will be more likely close

to cues.

In summary, Eqs. 1–3 describe the flexible fuzzy-boundary model that we will

apply to the bias data from our task to determine the nature of how cues influence

the spatial categories represented in memory. Equations 3 and 4 will be applied to

unsigned error measures that should relate primarily to fine-grain memory error and

further explicate the role of cues. Thus, we believe our model-based analyses will

promote a better theoretical understanding of the underlying mechanisms of spatial

memory in our navigation task.
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1.2. Integrating a navigational component into the task

The standard navigation task used to assess spatial memory in animal research is the

Morris water maze (Morris, 1981; Morris, Garrud, Rawlins, & O’Keefe, 1982). Although

water maze studies have typically used rats, there are now several studies that have investi-

gated human participants in analogs of the water maze (Astur, Ortiz, & Sutherland, 1998;

Astur, Taylor, Mamelak, Philpott, & Sutherland, 2002; Fitting, Allen, et al., 2007; Jacobs,

Thomas, Laurance, & Nadel, 1998; Parslow et al., 2005). Computer-generated environments

are also increasingly popular as a tool to study place learning and memory (Jacobs,

Laurance, & Thomas, 1997; Maguire, Frith, Burgess, Donnett, & O’Keefe, 1998; Moffat &

Resnick, 2002; Sandstrom, Kaufman, & Huettel, 1998; Skelton, Bukach, Laurance, Thomas,

& Jacobs, 2000; Skelton, Ross, Nerad, & Livingstone, 2006). The obvious advantages of

this approach include that one can freely design environments according to study require-

ments, avoid the large costs in terms of effort, logistics, and control associated with studying

behavior in vista space or large-scale environments, and precisely track participants’ move-

ments in the environment.

In addition to the examination of the neurobiological substrates of place learning and

memory (Grön, Wunderlich, Spitzer, Tomczak, & Riepe, 2000; Jarrard, 1993; Morris &

Parslow, 2004; O’Keefe & Nadel, 1978; Sutherland & Rudy, 1987), a number of environ-

mental and experiential factors have been investigated to better understand the memory

mechanisms underlying place learning and memory. Several studies have investigated the

importance of cue availability in place learning (O’Keefe & Nadel, 1978; Prusky, West, &

Douglas, 2000). Nadel et al. (1998) demonstrated that the removal of individual cues after

learning did not impair performance at all unless all distal cues were removed. This finding

is also confirmed in research with humans using a virtual world analog to the water maze

task (Jacobs et al., 1998). These results seem very surprising given the reduction in accuracy

one would expect when there are fewer than three cues available for the triangulation of

location. However, it may be that, in these studies, available geometric features of the task

field or other subtle distal cues were used to support the memory for location. Given this

evidence, we believe that the basic question of whether more peripheral cues lead to

increased accuracy during place learning in humans has yet to be well established.

We believe it is useful to combine aspects of the dot-location task and the Morris water

maze navigation task to develop an intermediate task that provides further understanding of

cue usage in navigation. We focused on three main adaptations of the dot-location task

based on facets of the water maze task. First, the Morris water maze task includes a naviga-

tional component that allows one to trace the path to the target from start to finish. We mod-

ified the dot-location task to include this navigational component so that cue usage could be

gauged by navigational measures related to (a) initial heading bias and error, (b) efficiency

of the path taken, and (c) indicators of bias near the end of the search. Second, the water

maze task consists of a learning phase in which the target platform’s location is learned

through exploration from a fixed orientation. Our adapted task includes this division

between the learning and test phases. Finally, during the test phase, the orientation to the

water maze is typically varied so that the subject cannot depend on egocentric cues but must
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use an allocentric encoding of the spatial location based on cues. Our adapted task included

this manipulation of orientation to the task field.

1.3. Adapted task

Before clarifying our hypotheses, we believe it is instructive to describe essential

elements of our navigation task. Fig. 1 presents the layout used for the task. Although the

participant saw a white circular task field on a black background, the diagram in Fig. 1

presents the underlying grid structure through which participants navigated a rat image.

As the participant moved the rat image continuously in search of one of the 16 target

platform locations shown in Fig. 1, each successive location was recorded in row and

column grid coordinates. Participants inferred the orientation of the task field relative to

learning trials from the relative locations of the cues, with participants exposed to the same

cues (1, 2, or 3) throughout the experiment.

Fig. 2 depicts the four rotations and four starting places used in the task, with an example

target platform location. To test model-based predictions, we needed platform locations

within each quadrant, at more than one radial distance, and with cue locations that would

produce a pattern of bias different from the standard four-quadrant pattern. As depicted, the

starting location of the rat image was at one of four positions (north, south, east, and west)

and the task field was in one of four orientations (0�, 90�, 180�, or 270�). Fig. 2 shows the

Fig. 1. Target platforms located at a short radius of 92 pixels from the center (target platforms from 1–8) and at

a long radius of 168 pixels from the center (target platforms from 9–16). The overlaid grid was used to record

participant’s moves and was hidden during the actual test. The red horizontal and vertical lines divide the task

field into four quadrants, that is, (Q)1, Q2, Q3, and Q4, and were not viewable.
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location of the same target platform relative to the cues for each of the four orientations. As

in the water maze procedure, the orientation to the cues and the starting position were

altered on test trials. Our main dependent variables were collected on these 16 test trials for

each target platform, with the order of these trials randomized for each participant and for

each target platform.

1.4. Relevant measures for the adapted task

Our focus in this study was on how memory for spatial location was affected by the cues

presented outside the task field. In addition to production measures that are targeting specifi-

cally performance level of spatial tasks, we also looked at a variety of measures that more

Fig. 2. Illustration of the circular task field from four different orientations (0�, 90�, 180�, and 270�) each indi-

cated with four different entry points (N = north, S = south, E = east, and W = west) and the three surrounding

cue locations, a cue blue and violet in color located at 305�, a second cue green and blue in color located at 80�,

and a third cue yellow and red in color located at 170�. The lines indicate examples of navigational pathways.
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specifically targeted the process of spatial performance, which may be related to measures

of discrimination tasks (see Velea, 2006). We used four dependent variables to analyze spa-

tial memory processes and performance and describe each of these in turn.

1.4.1. Excess moves
This dependent variable was calculated by subtracting the minimum number of grid

spaces required to navigate to the target platform from the actual number of traversed. Note

that the maximum number of recorded moves was 200, as the trial was terminated if the tar-

get platform was not found after 200 grid space transitions. By subtracting the minimum

required moves, we eliminate artifactual effects related to differences in path length between

the starting location and the target location. This variable reflects the overall inefficiency in

navigation and hence inaccuracy of place memory. It parallels the typical swimming time

measures used in water maze tasks, in which greater swimming time reflects poorer mem-

ory. Our modeling of excess moves will be based on Eqs. 3 and 4.

1.4.2. Initial heading error
This dependent variable was calculated by recording the absolute angular difference

between the true heading toward the target and the heading taken by a participant. The par-

ticipant’s heading was calculated based on the average of the column and row coordinates

from the first 10 moves. This measure reflects the inaccuracy of the heading the participant

first took and thereby early effects of cues on navigation. Again, our modeling of heading

error will be based on Eqs. 3 and 4.

1.4.3. Initial heading bias
Heading was essentially calculated in the same way as initial heading error except that it

was a signed variable, with the sign indicating whether the actual heading was counterclock-

wise to the target heading (positive values) or clockwise to the target heading (negative

values) using polar coordinates. We signed heading bias in this way so that vectors headed

toward the same location relative to the target would receive the same sign, regardless of

the starting location. This measure allows us to compare the bias effects in initial heading

with the bias effects predicted by our models developed for the dot-location task. Our mod-

eling of initial heading bias is based on Eqs. 2 and 3 and utilizes polar coordinates to predict

angular bias.

1.4.4. End-position bias
This dependent variable is based on the last 10 grid spaces traversed before reaching the

target platform. Each move was recorded in row and column coordinates. End-position bias

is calculated by subtracting the actual target location (in row and column coordinates) from

the average of locations from the last 10 moves. This measure reflects the bias effects at the

very end of the navigation process and thus late effects of cues on navigation. It should be

noted that this measure only reflects bias effects when one collapses across starting position.

Our modeling of end-position bias is based on Eqs. 1, 2, and 3 and utilizes Cartesian

coordinates.
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1.5. Three primary hypotheses

We used the measures described above to assess three main sets of hypotheses, with spe-

cific hypotheses summarized in Table 1. The first set of these hypotheses focused on effects

of number of cues, the second on locations of targets relative to cues, and the third on effects

of rotation. Our hypotheses were based on our assumption that participants would use

the following simple navigation strategy. First, the participant would estimate a location for

the hidden platform and attempt to move the rat icon directly to that location. Second, in the

event that the location was not found, the participant would search in ever-widening radius

of the estimated location.

1.5.1. Number of cues
Most of our work on cue-based bias has demonstrated that increasing the number

of cues decreases the degree of categorical bias and the overall inaccuracy of memory

(Fitting et al., 2005; Fitting, Wedell, et al., 2007; Fitting et al., 2008a). Theoretically,

Table 1

Delineation of three primary experimental hypotheses

Hypotheses regarding number of cues

H1a Increasing the number of cues will lead to a decrease in excess moves, reflected in a main effect of

cues

H1b Increasing the number of cues will lead to a decrease in initial heading error, reflected in a main

effect of number of cues

H1c Increasing the number of cues will lead to a decrease in heading bias, reflected in an interaction of

number of cues and target angle

H1d Increasing the number of cues will lead to a decrease in absolute end-position error, reflected in a

main effect of cues

Hypotheses regarding proximity of cues

H2a Memory for targets will be best when the target is located close to a cue, reflected in a main effect

of radius and a Cue · Target Angle interaction for excess moves

H2b Memory for targets will be best when the target is located close to a cue, reflected in a main effect

of radius and a Cue · Target Angle interaction for initial heading error

H2c There will be an initial heading bias in the direction of the cue located closest to the target,

reflected in a main effect of target and a Cue · Target interaction

H2d There will be an end-position bias in the direction of the nearest cue-based prototype, reflected in a

Coordinate · Target Angle and Coordinate · Cue · Target Angle interaction

Hypotheses regarding rotation

H3a Memory for targets will be best when the task field is at the same orientation as in learning,

reflected in a main effect of orientation on the excess moves measure

H3b Memory for targets will be best when the task field is at the same orientation as in learning,

reflected in a main effect of orientation on the initial heading error measure

H3c Memory for targets will be best when the task field is at the same orientation as in learning,

reflected in an Orientation · Target Angle interaction for initial heading bias

H3d Memory for targets will be best when the task field is at the same orientation as in learning,

reflected in an orientation interaction for absolute end-position error
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these effects derive from mechanisms related to the distance between the target loca-

tion and the cue or prototype. In terms of bias, if cues represent prototypes, then bias

increases as a function of the distance from the target to the cue, as described in Eq.

2. With more cues, targets will generally be less distant from the nearest cue-based

prototype and hence the degree of bias will decrease. Second, even when cues are not

used as prototypes, they appear to serve the function of anchoring fine-grain memory

in regions proximal to the cue (e.g., Fitting et al., 2008b). Equation 4 captures this

idea by the increase in fine-grain error as the distance to cues increases. These effects

on fine-grain error also affect the degree of categorical bias, as the weighting of proto-

types (k in Eqs. 1 and 2) is assumed to increase with a decrease in fine-grain memory

quality. With more cues, the distance to the nearest cue decreases on average and

hence fine-grain memory should be bolstered and bias decreased. Our hypotheses

assume that results from the dot-location task will apply throughout the navigation

task. Thus, as described in Table 1, H1a predicts the reduced excess moves with more

cues, H1b predicts the reduced heading error with more cues, H1c predicts the reduced

heading bias with more cues, and H1d predicts the reduced end-position error with

more cues.

1.5.2. Target proximity to cues
Previous work has demonstrated that in the dot-location task, a fine-grain memory advan-

tage exists for targets nearer the circumference and hence nearest to cues (Fitting, Wedell,

et al., 2007; Fitting et al., 2008a). Those studies that involved rotation showed additional

reduction in error as angular distance to the cues was reduced. We attribute both effects to

the idea that cues serve to anchor fine-grain memory in regions proximal to the cues. This

study examines whether this advantage exists in a navigation task and whether it can be

found during early and late searching behavior. Again, our hypotheses assume that results

from the dot-location task will apply throughout the navigation task. Thus, as described in

Table 1, H2a predicts the reduced excess moves for targets proximal to cues, H2b predicts

the reduced heading error for targets proximal to cues, H2c predicts that the initial heading

bias will be toward the nearest cue, and H2d predicts that the end-position bias will be

toward the nearest cue-based prototype.

1.5.3. Rotation
In our previous work, we have observed that the participant’s accuracy in the dot-

location task was best for 0� rotation trials and became increasingly poorer as the

angle of rotation increased (Fitting, Wedell, et al., 2007; Fitting et al., 2008a). This

finding is consistent with the encoding specificity principle, in which memory is the

best when context at retrieval matches context at encoding (Tulving & Thomson,

1973). We assumed this finding from the dot-location task would apply again to the

navigation task. Thus, as described in Table 1, H3a predicts the reduced excess moves

for 0� rotation, H3b predicts the reduced heading error for 0� rotation, H3c predicts

the reduced initial heading bias for 0� rotation, and H3d predicts the reduced end-

position error for 0� rotation.
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2. Method

2.1. Participants

Participants were 172 students from the University of South Carolina who volunteered in

exchange for course credits. Data from 122 participants were retained for the analysis after

dropping data from those who did not meet the learning criterion prior to test trials as

described below.

2.2. Task

All participants attempted to navigate to the locations of eight hidden target platforms

located within a circular region. The target platform is defined as the escape platform in the

‘‘real’’ Morris water maze task. The eight targets were distributed over the circular area in

order to provide sufficient data for modeling the predicted biases and errors. Radius was

manipulated as a between-subjects factor: For half the participants, the eight target platform

trials, thus the eight hidden target platforms were located at a radius of 92 pixels (short

radius; see Fig. 1, target platforms 1–8); and for the other half, the eight target platform

trials, thus the eight hidden target platforms were located at a radius of 168 pixels (long

radius; see Fig. 1, target platforms 9–16). Throughout the study, we will refer to these loca-

tions as the ‘‘target locations.’’

Of the eight target locations for short and long radius conditions, two were located within

each of the four quadrants. Target platform trial blocks were presented successively in ran-

domized blocks. Number of external reference cues was manipulated between subjects, with

either one, two, or three cues along the circular region. Participants were randomly assigned

to one of the six (Radius · Cue) conditions. Moves while navigating through the computer-

based environment were recorded in x and y coordinates using the overlaid grid illustrated

in Fig. 1.

Table 2 provides detailed descriptions of the 16 target locations, identified by their radius

value (short or long) and the quadrant in which they reside. Angle is based on polar coordi-

nates (from the center of the circle) and Q-angle reflects the angular location within the

quadrant. Headings 1–4 indicate the angular heading from the four different starting loca-

tions, used in computing the heading error and bias. Finally, the minimum moves from each

starting position to each target platform were used to determine excess moves.

2.3. Materials and apparatus

All materials and instructions were presented on desktop computers with 15-in (38-cm)

monitors. Participants’ distance to the monitor was between 30 and 60 cm. The white circu-

lar region was presented on a black background with a radius of 220 pixels in video graphics

array mode at a resolution of 640 · 480 pixels. An invisible grid with 30 rows as the y coor-

dinate (17 pixels in width) and 30 columns as the x coordinate (17 pixels in height) divided

the circular area and was used to measure moves while navigating through the circular field.
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This grid is shown in Fig. 1, although it was not visible to participants. For each block of tri-

als, a hidden target platform was located at a fixed position within the circle (i.e., for the

short and the long radius the eight target locations were located at 25�, 73�, 95�, 130�, 205�,

253�, 275�, and 310�). Across trial blocks, participants were asked to find each of the eight

hidden target platform locations from four different entry points (north, south, east, and

west) and from four different circle orientations (0�, 90�, 180�, and 270�). Starting locations

and orientation manipulations are shown in Fig. 2.

In the one-cue condition, the reference cue (blue and violet in color) was located at 305�
along the outside of the circle; in the two-cue condition, an additional cue (green and blue in

color) was located at 80�; and in the three-cue condition, an additional cue (yellow and red

in color) was located at 170� (Figs. 1 and 2). The colors for the cues were chosen to make

them highly distinguishable from each other.

2.4. Procedure

Groups of 1–5 participants were individually tested on the computer. After reading the

general instructions, participants were presented practice trials to move the rat image in the

circular field. The rat image appeared just outside of one of the four entry locations, as

shown in Fig. 2. To navigate with the rat to find the hidden target platform, the participant

placed the cursor on the rat image, then held down the left mouse button and moved the rat

image within the circular region. The rat image was able to be moved in any of eight direc-

tions (to the next grid location) within the circular field. Each successive move within the

underlying grid of Fig. 1 was recorded.1 Following the initial practice session, participants

were asked to navigate through the circular task field and find a hidden target platform that

Table 2

Location, initial heading, and minimum move information for targets

Target 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Radius S S S S S S S S L L L L L L L L

Quadrant 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

Angle 25 73 95 130 205 253 275 310 25 73 95 130 205 253 275 310

Q-angle 25 73 5 40 25 73 5 40 25 73 5 40 25 73 5 40

Heading 1 293 276 264 248 251 264 270 279 312 307 256 221 242 261 270 285

Heading 2 6 17 20 20 342 335 338 345 10 29 36 45 315 315 324 337

Heading 3 74 87 93 102 117 103 90 73 65 83 92 107 135 135 90 45

Heading 4 168 159 162 168 189 201 203 204 141 138 146 159 192 211 218 228

Min. Move 1 12 9 9 10 17 20 20 19 10 4 4 7 19 25 25 23

Min. Move 2 20 16 14 11 9 13 15 18 24 18 14 8 5 11 15 21

Min. Move 3 17 20 20 19 12 9 9 10 19 25 25 23 10 4 4 7

Min. Move 4 9 13 15 18 20 16 14 11 5 11 15 21 24 18 14 8

Note: S, Short; L, long; Q-angle, angle within quadrant; all heading and distances calculated using the up

orientation, with numbers indicating starting position (1 = north, 2 = west, 3 = south, 4 = east). Heading:

deviation from the starting point to the target location in degree; rounding value min. moves: minimum

number of moves from the starting position to the target.
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would be shown in red once found or once exceeding the maximum number of moves. The

target platform was shown on the screen for 5 s and then covered by a dynamic checker-

board mask for 1.5 s followed by a blank circle, indicating the start of the next trial. The

checkerboard mask consisted of white and black 10 · 10 pixels quadrants covering the

circular region. The colors of the checkerboards were exchanged six times after 0.25 s,

creating a moving pattern to avoid fixation.

These procedures were illustrated to the participant with three preliminary sets of trials

that included elaborate visual feedback demonstrations to make sure the task was under-

stood. These were then followed by the eight blocks of experimental trial sets (one for each

target platform). At the beginning of each set, there were four learning trials in which the

participant attempted to find the target platform from the same 0� orientation but from four

different starting locations. Orientation was not varied on learning trials so that the partici-

pants would have an easier time learning the target location. The four learning trials were

followed by 16 test trials in which each of the Orientation · Starting location conditions

was presented in a random order. Thus, 160 trials (4 learning trials plus 16 testing trials for

each of 8 target locations) were included in the experimental phase. Successive moves were

recorded throughout navigation.

2.5. Learning criteria

Because our focus is only on those who had adequately learned the target location in the

0� orientation, we established a learning criterion used to drop participants from the data

analysis. The mean number of moves across the eight target locations for each of the four

learning trials was calculated to determine the typical learning curve across participants.

Based on this analysis, participants had to average <46 moves to find the target in the third

learning trial and <41 moves in the fourth trial to meet the criteria. Note that for a given tar-

get platform and starting location, the minimum number of moves to the target ranged from

4 to 25 moves. We deemed that averaging more than 45 moves on the third trial would indi-

cate a failure of learning. We lowered the criterion to 40 moves for the fourth trial to reflect

the additional learning that was expected.

All data analyses we report are on the 122 participants who met the criteria. The number

of participants retained in the six between-subjects conditions was n = 20 for all but two

conditions: n = 21 in both the two-cue long-radius condition and three-cue short radius

condition.

3. Results

For each of the dependent variables, factorial analyses of variance (anovas) were con-

ducted based on two between-subjects factors and three or four within-subjects factors. The

between-subjects factors were cue condition (one, two, or three cue) and radius (short or

long). Within-subjects factors were target angle (eight levels), grid orientation (0�, 90�,

180�, and 270�), and starting position (north, south, east, and west). Because analysis of
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end-position bias was conducted on Cartesian coordinates, it included the additional within-

subjects factor of dimension (x and y). For the within-subjects factor, violations of com-

pound symmetry were addressed via the use of the Greenhouse–Geisser degrees of freedom

correction factor where applicable (Greenhouse & Geisser, 1959).

3.1. Excess moves

Fig. 3 plots excess moves as a function of radius, target angle, and cue. The data are rep-

resented by symbols and model fits (described below) by functions, with arrows indicating

cue locations. As shown in Fig. 3, there were systematic effects on excess moves related to

radius, angle and cue. A 3 (Cue) · 2 (Radius) · 8 (Target Angle) · 4 (Orientation) · 4

(Start) mixed factorial anova was used to analyze excess moves. The corresponding column

of Table 3 summarizes tests from that analysis, excluding tests of main effects of and inter-

actions with orientation and starting position.

The significant main effect of cue was essentially completely described by its linear

trend, F(1, 116) = 28.58, p < .001. Excess moves decreased systematically with an increase

in the number of cues M1 cue = 39.53, M2 cues = 28.63, and M3 cues = 22.50 and supported

H1a. Pairwise comparisons using Tukey’s correction indicated that the one-cue condition

significantly differed from the two-cue condition (p < .01) as well as from the three-cue

condition (p < .001). Note also that the standard deviation decreased as well, with this

decrease significant at p < .05 by an F-max test: SD1 cue = 20.10, SD2 cues = 14.17, and

SD3 cues = 8.52. The violation of heterogeneity makes the anova test for this condition

suspect. However, this effect was very robust so that even if we use the largest within-cell

variance as a substitute for the error term, the effect is significant at p < .01.

The significant radius effect reflected greater difficulty in finding short radius targets

(M = 34.53, SD = 17.74) than long radius targets (M = 25.76, SD = 13.82). This finding

supported H2a, which asserted that short radius targets will be harder to find than long radius

Fig. 3. Model fit based on Eq. 4a (using metric distance) on excess moves across target angle separate for the

three cue conditions. The error bars indicate 1 standard error of the mean. CB = boundary-based cue, C1 = cue

1, C2 = cue 2, and C3 = cue 3.
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targets and confirmed previous research with reflecting a fine-grain memory advantage for

targets nearer the circumference (Fitting, Wedell, et al., 2007; Werner & Diedrichsen,

2002). This effect is shown in Fig. 3 by the systematically lower values of the filled circles

(long radius targets) than the open circles (short radius targets).

The significant main effect of target angle indicated that some targets led to greater

excess moves than others. In particular, excess moves were highest for target angles in quad-

rant 3, in which no cue was located. The significant Target Angle · Cue interaction reflects

the negative relationship between target proximity to the cues and excess moves as shown

in Fig. 3. When there is just one cue at 305�, excess moves are generally high except in

quadrant 4 where the cue is located (and to some extent for the target location directly oppo-

site the cue location). Likewise, excess moves are most reduced in quadrants 1 and 4 in the

two-cue condition, as these are the quadrants where cues were located. Finally, the three-

cue condition demonstrates this same relationship, with excess moves greatest in quadrant

3, which had no corresponding cue. This pattern of results supports H2a, which asserted that

memory for target locations would be the best when the target is located close to a cue.

To better understand these relationships and test the idea that cues anchor fine-grain

memory, the data were fit to a version of Eq. 4, substituting excess moves for fine-grain

memory error and including a simplified version of Eq. 3 to determine relevance weighting.2

The general nonlinear regression equation we used to fit data within each cue condition was

as follows:

EMij ¼ b0j þ
X rijk

bjk
Dijk; ð4aÞ

where EMij is the excess moves for target angle i, radius j, b0j is a baseline error

value that can vary with radius, bjk weights distance from the target to cue k and can

vary with cue and radius, Dijk is the Euclidean distance between the target and the

cue, and rijk moderates weights and reflects the relevance or proximity of the target

to the cue. The relevance weight was based on a negative exponential similarity

function with a single parameter as follows:

Table 3

Degrees of freedom and F-values for 3 (Cue) · 2 (Radius) · 8 (Target Angle) · 4 (Orientation) · 4 (Start

Position) mixed factorial anovas

Source df Excess Moves Initial Heading Error Initial Heading Bias

Cue (C) 2, 116 14.59*** 10.24*** 2.21

Radius (R) 1, 116 11.66*** 16.07*** 1.00

R · C 2, 116 0.59 0.21 0.61

Target Angle (TA) 7, 812 21.70*** 14.38*** 2.39*

TA · C 14, 812 12.27*** 6.18*** 3.92***

TA · R 7, 812 2.04 3.62** 3.24**

TA · C · R 14, 812 1.39 2.09* 1.43

Note: *p < .05, **p < .01, ***p < .001, for the within-subjects factors: pGG, tests involving Orientation and

Starting Position are not shown.
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rijk ¼ expð�cDijkÞ; ð3aÞ

where c is a sensitivity or scaling parameter. Equation 3a was substituted for rijk in Eq. 4a

when fitting the data using a least-squared error criterion. Based on our earlier modeling of

the dot-location task (Fitting et al., 2008a), we included a boundary-based cue, with weight

bB, in the one-cue condition located 180� from the actual cue and that we have previously

labeled a ‘‘phantom cue.’’ Conceptually, the phantom cue might arise by participants pro-

jecting a cue location opposite the actual cue and using that as a guide to locate targets that

are far from the single cue.

The model minimally requires three fitted parameters, b0, b, and c. Higher parameter ver-

sions of the model allow the intercept to vary with radius and the weights to vary with cue

or radius. We began modeling the data in each cue condition by fitting the highest parameter

model and then successively constraining it by holding parameters constant that did not

cause a significant drop in R2. Table 4 presents the parameter values and R2 values from

these regressions. Although the use of distance to closest cues means that short radius

targets will generally have higher error than long radius targets, only the fit to the one-cue

condition sufficiently accounted for this effect without fitting additional parameters to

radius. The one-cue condition was also the only condition that required that weights vary

with cues. However, this is consistent with our previous work in which the phantom cue

is not necessarily treated the same as actual cues (Fitting et al., 2008a). Overall, the fits of

the four- to five-parameter models indexed R2 values that were larger than .80. Additionally,

R2 was significantly decreased in the one-cue condition if the phantom cue distance was

not included, providing further support for a phantom cue at the boundary in the one-cue

condition.

The fit of the model can be also visually assessed by examining how well the functions in

Fig. 3 predict the variations in the data points. The prediction functions clearly capture the

salient features of the data. The model captures the great reduction in excess moves when a

target is located close to a cue. The greater sensitivity to cue locations for the long

radius targets in the one-cue condition when compared with two- and three-cue conditions

Table 4

Parameter values and fit indices modeling excess moves for each of the three cue conditions

Model Radius

Parameters

c b0 b1 b2 or bb b3 R2

Excess Move 1 4P Short 0.078 )87.7 0.208 0.040 – .884

Long 0.078 )87.7 0.208 0.040 –

Excess Move 2 5P Short 0.042 )154.3 0.084 0.084 – .888

Long 0.042 )43.6 0.218 0.218 –

Excess Move 3 5P Short 0.040 )215.5 0.101 0.101 0.101 .843

Long 0.040 )78.0 0.243 0.243 0.243

Note: P = parameter; c = sensitivity parameter; b0 = intercept; b = weight of the distance from target to cue

(subscripts indicate cue); bold faced values are free to vary; italicized values were constrained to be equal to a

bold faced value.
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is modeled by a higher sensitivity parameter in the one-cue condition. The greatly reduced

error at the location opposite the cue in the one-cue condition provides strong evidence for a

boundary-based phantom cue. Overall, the modeling reinforces the importance of proximity

to cues as a major factor guiding the efficiency of search.

In addition to the effects illustrated in Table 3, a significant main effect of orientation

was noted, F(3, 348) = 62.26, p < .001, reflecting reduced excess moves for 0� orientation

trials (M = 22.00, SD = 13.65) compared with rotated trials (M90� = 33.00, SD = 19.38;

M180� = 31.73, SD = 19.10; M270� = 33.85, SD = 19.00). Pairwise comparisons using

Tukey’s correction demonstrated that the only significant differences in excess moves were

between the 0� orientation and each of the other orientations. The finding that excess moves

were significantly reduced in the 0� orientation trials compared with the rotated orientation

trials supports H3a, reflecting a memory advantage when testing in the orientation that

matched the orientation during learning, an encoding specificity effect.

Additionally, the Orientation · Cue interaction was significant, F(6, 348) = 9.59,

p < .001. Fig. 4 presents a bar graph of the relevant means making up the interaction. As is

readily apparent from Fig. 4, the effect of cue is much larger for the three rotated orienta-

tions than for the nonrotated 0� orientation. This effect is captured in the interaction contrast

comparing the linear effect of cues in the learning orientation with that in the other three

conditions, F(1, 119) = 48.25, p < .001. Importantly, while the linear effect of cue is

reduced for the learning orientation, it is still significant, F(1, 119) = 4.41, p < .05, indicat-

ing that even in a task field orientation in which cues do not have to be used necessarily, an

increase in the number of cues reflects better memory. This finding parallels our results

using the dot-location task (Fitting, Wedell, et al., 2007).3

3.2. Initial heading error

Fig. 5 plots initial heading error as a function of radius, target angle, and cue. The data

are represented by symbols and model fits (described below) by functions, with arrows

Fig. 4. Excess moves for the three cue conditions separate for orientation. The error bars indicate 1 standard

error of the mean. A significant Orientation · Cue interaction was noted.
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indicating cue locations. As shown in Fig. 5, there were systematic effects on heading error

related to radius, angle, and cue. A parallel 3 · 2 · 8 · 4 · 4 mixed factorial anova was

used to analyze the initial heading error. The corresponding column of Table 3 summarizes

tests from that analysis, excluding tests of main effects of and interactions with orientation

and starting position.

The significant main effect of cues supported H2b, indicating less initial heading error as

the number of cues increased. Pairwise comparisons using Tukey’s correction indicated that

the one-cue condition (M = 14.64, SD = 3.77) significantly differed from the two-cue con-

dition (M = 12.07, SD = 2.77) as well as from the three-cue condition (M = 12.14,

SD = 2.53). As with the excess moves measure, initial heading error did not decrease signif-

icantly from two to three cues.

There was a significant main effect of radius, with reduced initial heading error for the

short radius targets (M = 11.88, SD = 2.26) than for long radius targets (M = 13.99,

SD = 3.76). This result is in the opposite direction of the effect reported for excess moves

and considered in hypothesis H2b, as short radius targets are typically more distant from the

nearest cue than long radius targets. One explanation for this difference is that there was a

tendency for participants to initially head toward the center of the circle, reflecting a center

bias that would result in less heading error for short than for long radius targets. To investi-

gate this explanation, we conducted additional analyses on center heading bias, calculated

by coding the heading error toward the center as positive and the heading error away from

the center as negative. A one-sample t test on this measure indicated a significant positive

bias, M = 5.01, SD = 3.59, t(121) = 15.42, p < .001, confirming a bias toward the center of

the task field. The tendency to head toward the center might then explain the significant

radius effect for initial heading error due to the fact of creating more bias for long than for

the short radius. This explanation is supported by results of a 3 (Cue) · 2 (Radius) model

anova on center heading bias. A significant radius effect, F(1, 116) = 39.12, p < .001,

Fig. 5. Model fit based on Eq. 4b (using metric distance) on initial heading error across target angle separate for

the three cue conditions. The error bars indicate 1 standard error of the mean. CB = boundary-based cue,

C1 = cue 1, C2 = cue 2, and C3 = cue 3.
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reflected greater center heading bias for the long radius target (M = 6.74, SD = 3.82) than

for the short radius target (M = 3.28, SD = 2.31). There was also a significant effect of cues,

F(2, 116) = 5.42, p < .01, consistent with a greater center heading bias in the one-cue than

the two- or three-cue condition.

Returning to the analysis of initial heading error, Table 3 also shows a large and signifi-

cant main effect of target angle. Consistent with hypothesis H2b, heading error was the

greatest for targets in quadrant 3, which had no cues associated with it (Fig. 5). Target angle

also interacted with cue and radius in significant two- and three-way interactions. These

effects appear to be mostly captured by the idea that initial heading error is minimized for

targets located near cues, as shown in Fig. 5.

To test this assertion and better understand these relationships, the data were fit to a

version of Eq. 4 that paralleled the equation used for excess moves as follows:

HEij ¼ b0j þ
X rijk

bjk
Dijk; ð4bÞ

with the only difference between Eqs. 4a and 4b being the dependent measures (HEij reflects

the heading error for target angle i and radius j). Parallel to our modeling of excess moves,

we included a phantom cue for the one-cue condition in modeling the heading error. Equa-

tion 3a was substituted in for rijk in Eq. 4b when fitting the data using a least-squared error

criterion. As with our earlier modeling, we began by fitting the highest parameter model and

then successively constraining it by holding parameters constant that did not cause a signifi-

cant drop in R2. Table 5 presents the parameter values and R2 values for the best-fit models.

The selected models paralleled those for excess moves. In this case, however, the differ-

ences in the parameters tied to radius were needed to account for the greater heading error

for long radius targets than for short radius targets. Once again, the fits of the four- to

five-parameter models indicated R2 values that were larger than .80.

The fit of the model can be visually assessed in Fig. 5. Similar to the fit for excess moves,

the model captures the great reduction in initial heading error when a target is located close

Table 5

Parameter values and fit indices modeling initial heading error for each of the three cue conditions

Model Radius

Parameters

c b0 b1 b2 or bb b3 R2

Initial heading 4P Short 0.005 )22.1 0.782 0.902 – .905

Error 1 Long 0.005 )22.1 0.782 0.902 –

Initial heading 5P Short 0.059 )35.6 0.255 0.255 – .878

Error 2 Long 0.059 )0.2 0.832 0.832 –

Initial heading 5P Short 0.042 )18.9 0.787 0.787 0.787 .819

Error 3 Long 0.042 )13.9 0.846 0.846 0.846

Note: P = parameters; c = sensitivity parameter; b0 = intercept; b = weight of the distance from target to

cue (subscripts indicate cue); bold faced values are free to vary; italicized values were constrained to be equal to

a bold faced value.
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to a cue and shows a clear effect of the phantom cue. In contrast to excess moves, there is a

greater heading error for long radius targets than for short radius targets, which may be plau-

sibly attributed to a bias to head toward the center of the task field. Overall, the modeling

reinforces the importance of proximity to cues as a major factor guiding the efficiency of

search.

In addition to the effects illustrated in Table 3, significant effects for orientation were

noted: Out of 16 effects, 7 were significant at an a-level of .01. Further, significant effects

for starting location were noted: Out of 16 effects, 6 were significant at an a-level of .01.4

Not surprisingly, these results indicate that both orientation to the circular task field and

starting location influence the initial heading error. Because the focus of this research is pri-

marily on effects of cues, we will not consider these further except to note that the main

effect of orientation was consistent with hypothesis H3b in that the heading error was least

for the 0� orientation (M = 12.17, SD = 3.77) compared with rotated trials (M90� = 13.84,

SD = 3.76; M180� = 12.75, SD = 3.29; M270� = 12.98, SD = 4.01), indicating an encoding

specificity effect.

3.3. Initial heading bias

Fig. 6 plots the initial heading bias as a function of radius, target angle, and cue. The data

are represented by symbols and model fits (described below) by functions, with arrows indi-

cating cue locations. As shown in Fig. 6, there were systematic effects on heading bias

related to radius, angle, and cue. A parallel 3 · 2 · 8 · 4 · 4 mixed factorial anova was

used to analyze the initial heading bias. The corresponding column of Table 3 summarizes

tests from that analysis, excluding tests of main effects of and interactions with orientation

and starting position. The main effect of target angle indicates that the initial heading bias

Fig. 6. Fuzzy-boundary model predictions based on Eq. 2a fit to the initial heading bias across target angle

separately for the three cue conditions. The error bars indicate 1 standard error of the mean. A positive value

indicates a counterclockwise bias, and a negative bias indicates a clockwise bias. CB = boundary-based cue,

C1 = cue 1, C2 = cue 2, and C3 = cue 3.
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depends on the location of the target. This relationship, however, changes with the number

of cues, as indicated by the significant Target Angle · Cue interaction and the very different

shape of the bias patterns shown across the different panels of Fig. 6. The pattern of bias in

Fig. 6 suggest a three-way interaction of target angle, cue, and radius, but this effect was not

statistically significant (although the Target Angle · Radius interaction was).

Fig. 6 illustrates the initial heading bias and the flexible fuzzy-boundary model

predictions. Based on our flexible fuzzy-boundary model of Eq. 2, we represent the bias in

the initial heading as follows:

HBij ¼ klij þ ð1� kÞ
X

rijkPk � lij; ð2aÞ

where HBij is the initial heading bias for target angle i at radius j, lij is the mean of the dis-

tribution of fine-grain memory values for the target ij assumed to be unbiased and hence

equated with the true location of the target, and rijk represents the relevance of prototype k
to stimulus ij. Similarly, Pk is the mean of the distribution of prototype locations for the rele-

vant category. The parameter, k, which varies from 0 to 1, represents the relative weight of

the fine-grain information.

The model is an extended version of the category-adjusment model that allows cues to

serve as prototypes and assumes probabilistic prototype recruitment. The prototype recruit-

ment equation that describes relevance weights is based on the similarity of the stimulus to

the prototype, modeled as follows:

rijk ¼
expð�cjkjlij � PkjÞP
expð�cjkjlij � PkjÞ

; ð3bÞ

where cjk is a sensitivity parameter that represents the sharpness of the boundary (the lower

the value of c, the fuzzier the boundary) and that can vary with radius or prototype. When c
does not vary with prototype, the inferred category boundaries fall at equal distances

between category prototypes. When c varies with protoype, the inferred category boundary

would fall closer to the prototype with the higher value of c. For modeling purposes, we

include ‘‘virtual’’ prototypes at 360� above the lowest prototype and 360� below the highest

prototype to account for the fact that 360� and 0� represent the same angle and thus provide

an accurate recruitment function (for more details, see Fitting, Wedell, et al., 2007). Note

that even when there is only one prototype, there will be a boundary opposite that prototype

created by the inclusion of these virtual prototypes. Equation 3b was substituted for rijk in

Eq. 2a when fitting the data using a least-squared error criterion. In fitting the data, we

allowed the number of prototypes to vary and included additional prototypes if they signifi-

cantly incremented R2.

When viewing Fig. 6, inferred prototype locations roughly correspond to where the

downward sloping function intersects the 0� bias axis. As shown, two prototypes were

inferred for one-cue and two-cue conditions and three were inferred for the three-cue condi-

tion. The fact that bias was close to zero at each of the cue locations supports the idea of a

cue-based category structure used to encode spatial locations. As shown in Fig. 6, the model

was able to fit the pattern of the data in the one-cue condition well with a five-parameter
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model, including a prototype location close to the actual cue location, a phantom prototype

roughly opposite to the cue location and c values varying with radius (k = 0.975,

cLP1 = 0.312, PB = 125.6º, P1 = 310.9º, cS = 0.016, R2 = .726; note that, for the long

radius, the sensitivity parameter c was fixed at 1 for the phantom prototype.). Similarly, the

best fit model in the two-cue condition was a five-parameter model, with inferred prototypes

very close to the cue locations and c varying with prototype (k = 0.969, c1 = 0.026,

P1 = 302.5º, c2 = 0.030, P2 = 84.8º, R2 = .783). No significant improvement was noted

when including radius or an additional prototype in the model. Finally, the best fit model in

the three-cue condition included six parameters, with three prototypes and two values of c
that varied with prototype (k = 0.919, c1 = c2 = 0.018, P1 = 34.6º, P2 = 181.2º,

c3 = 0.013, P3 = 344.1º, R2 = .614). No significant improvement was noted when including

radius in the model or additional prototypes in the model. Although the inferred location for

P2 was very close to a cue value, that for P1 was somewhat below the corresponding cue

location and that for P3 was somewhat above the corresponding cue location. In summary,

the flexible-fuzzy boundary gives a moderate account of the cue-based bias pattern by infer-

ring prototypes close to cue locations.

In addition to the significant effects described in Table 3, the most prominent effect was a

main effect of starting location, F(3, 348) = 664.64, p < .001. Fig. 7A illustrates the nature

of this bias. As shown, east and west starting locations tended to show an upward bias

(reflected in a clockwise bias for the west, M = )9.65, SD = 3.83, and counterclockwise

bias for the east, M = 9.77, SD = 3.44). Bias was much less for the north and south locations

and tended to reflect a slight leftward bias (Mnorth = 2.94, SD = 3.02, and Msouth = )0.91,

SD = 3.37). The impact of starting location varied with orientation, F(9, 1044) = 17.77. As

illustrated in Fig. 7B, the east starting location seems to display less initial heading bias for

the 270� orientation compared with the other orientations, whereas the west starting location

shows a higher initial heading bias for the 90� orientation compared with the other orienta-

tions. However, the basic pattern of the start location is maintained across all orientations.

An additional significant Cue · Orientation · Start interaction, F(18, 1044) = 9.30, reflects

(A) (B)

Fig. 7. (A) Circular task field illustrating the significant starting location effect on initial heading bias. (B)

Initial heading bias in degrees for the four starting locations separate for orientation. The error bars indicate 1

standard error of the mean. A significant Start · Orientation interaction was noted. A positive value indicates a

counterclockwise bias, and a negative bias indicates a clockwise bias.
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some fluctuation of this pattern with cue, but these effects were not of particular importance

to our research focus.

Further significant effects were noted with target angle. A significant Target Angle ·
Orientation interaction, F(21, 2436) = 14.37, p < .001, is illustrated in Fig. 8 and reflects a

quadrant-based orientation bias. Examining the 0� rotation condition, one can see a clock-

wise (negative) bias for quadrant 1 targets, a counterclockwise (positive) bias for quadrant 3

targets, and a mixed pattern for targets in quadrants 2 and 4. In each rotation condition,

Fig. 8 codes the targets in terms of the quadrants they end up in after rotation. Note that

there is a consistent tendency to maintain the clockwise bias for quadrant 1 locations (white

bars) and counterclockwise bias for quadrant 3 locations (dark gray bars). Additional signifi-

cant effects relative to starting position were found but are not described here as they were

small and inconsequential to our hypotheses.

3.4. End-position bias

End-position bias was measured by the average location during the last 10 recorded

moves before finding the target location. Because this measure only reflects bias effects

when collapsed across starting position, we do not include the starting position in the mixed

factorial anova. This analysis did include an additional factor, Dimension, that corresponded

to the dimension (horizontal or vertical) on which the location was recorded. Consequently,

a 3 (Cue) · 2 (Radius) · 2 (Dimension) · 8 (Target Angle) · 4 (Orientation) mixed facto-

rial anova was used to analyze the end-position bias, with Table 6 summarizing the key

elements of the analysis.

The significant Cue · Target Angle · Dimension interaction indicates a significant imp-

act of cue condition on end-position bias for the different target locations. This pattern of

result supports H2d, which asserts that end-position bias should be toward the nearest cue-

based prototype. To infer prototype locations that may account for this pattern of bias, we fit

Fig. 8. Initial heading bias in degrees for the four orientations separate for target angle. The error bars indicate

1 standard error of the mean. A significant Target Angle · Start · Orientation interaction was noted. A positive

value indicates a counterclockwise bias, and a negative bias indicates a clockwise bias. Quadrant refers to the

quadrant in which the target was found after the rotation.
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a version of the flexible fuzzy-boundary model taken directly from a previous study (Wedell

et al., 2007). This basic model is based on Eq. 2, using Cartesian coordinates, and describes

the bias in the mean response for stimulus i along dimension m as a weighted average of the

actual location on that dimension (assumed to be the mean of the fine-grain memory represen-

tation) and the weighted sum of prototype locations along that dimension as follows:

BIASijm ¼ klijm þ ð1� kÞ
X

rijkPkm � lijm; ð2bÞ

where Biasijm is the bias in the mean response for the target corresponding to angle i and

radius j on dimension m minus its actual location, k is the relative weight of fine-grain mem-

ory, lijm is the mean of the fine-grain memory distribution (corresponding to the actual stim-

ulus location) on dimension m (which takes two values in this case, x and y), Pkm is the

location of prototype k on dimension m, and rijk is the relevance weight of prototype j for

the target. Note that the fuzzy-boundary notion is captured by intermediate relevance weigh-

tings of prototypes so that there may be more than one relevant prototype, especially as the

target approaches the border between adjacent categories. In our model, relevance weighting

is based on the similarity of the location to the prototype as described in Eq. 3, where

similarity is assumed to be a negative exponential function of Euclidean distance:

rijk ¼
exp½�cððlijX � PkXÞ2 þ ðlijY � PkYÞ2Þ

1=2�
P

exp½�cððlijX � PkXÞ2 þ ðlijY � PkYÞ2Þ
1=2�

; ð3cÞ

where c is a sensitivity parameter that is fixed in this study at 1 and rijk indicates the propor-

tionate influence of Pk on the estimate of stimulus ij, prior to weighting by (1 ) k). Our

Table 6

Degrees of freedom and F-values for 3 (Cue) · 2 (Dimension) · 2 (Radius) · 8 (Target Angle) · 4

(Orientation) · 4 (Start) mixed factorial anovas

Source df End-Position Bias Absolute End-Position Error

Cue (C) 2, 116 1.55 14.3***

Radius (R) 1, 116 0.10 0.32

R · C 2, 116 0.01 0.02

Dimension (D) 1, 116 7.57** 0.05

D · C 2, 116 22.20*** 0.88

D · R 1, 116 5.01* 4.68*

D · C · R 2, 116 3.72* 0.05

Target Angle (TA) 7, 812 1.26 14.99***

TA · C 14, 812 1.00 9.83***

TA · R 7, 812 1.09 3.97**

TA · C · R 14, 812 1.84* 0.67

D · TA 7, 812 7.51*** 1.02

D · TA · C 14, 812 10.96*** 1.15

D · TA · R 7, 812 0.88 1.29

D · TA · C · R 14, 812 0.68 1.04

Note: *p < .05, **p < .01, ***p < .001, for the within-subjects factors: pGG.
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modeling strategy was to combine Eqs. 2b and 3c and fit the bias in x and y responses simul-

taneously after placing different constraints on the number and locations of prototypes.

To examine the goodness of fit of the model, we use change in R2 as the criterion to deter-

mine the best version of the model. To generate the predicted values shown in Fig. 9, we

substituted the values from Eq. 2b into Eq. 1a:

ESTijm ¼ klijm þ ð1� kÞ
X

rijkPkm; ð1aÞ

where ESTijm is the predicted estimate based on the model parameters.

Table 7 presents the parameter values of the best fit models for each cue condition.

For the one-cue condition, the model using one prototype and a phantom prototype at the

Fig. 9. Model fit based on Eq. 2b on the X and Y coordinates of end-position bias separately for the three cue

conditions. Open circles illustrate the estimated locations, the solid circles illustrate the actual target locations,

and Xs indicate the model predicted locations. Inferred prototype locations are represented by the symbol P.

Actual cue locations are represented by the symbol C. Subscripts refer to following: 1 = cue 1, B = boundary

for cue 1, 2 = cue 2, and 3 = cue 3.

Table 7

Parameter values and fit indices modeling the x and y coordinates of the end-position bias for each of the three

cue conditions

Cue Model Radius

Parameters

k PX1 PY1 PX2 or PXB PY2 or PXB PX3 PY3 R2

1 5P Short 0.844 17.1 11.7 12.6 15.8 – – .936

Long 0.844 17.1 11.7 12.6 15.8 – –

2 6P Short 0.915 16.4 18.9 15.9 11.0 – – .881

Long 0.877 16.4 18.9 15.9 11.0 – –

3 8P Short 0.847 15.9 10.7 9.0 16.2 15.0 17.6 .951

Long 0.845 15.9 10.7 9.0 16.2 15.0 17.6

Note: P = parameters; k = fine-grain memory; X refers to horizontal value (increasing left to right); Y refers

to vertical value (increasing bottom to top); subscripts for X and Y indicate which prototype they refer to; bold-

faced values are free to vary; italicized values were constrained to be equal to a bold faced value.
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boundary fit significantly better than a model using only one prototype. Further, using three

prototypes did not explain significantly more variance. The same was true for the two-cue

condition. For the three-cue condition, a model using one or two prototypes was signifi-

cantly worse compared with a model using three prototypes. Adding a fourth prototype,

however, did not explain significantly more variance.

As shown in Fig. 9, there were systematic bias effects as reflected in the differences

between the open symbols (observed values) and filled symbols (actual locations). The

model predictions (shown as Xs) explained this pattern of bias well, as predictions typically

fell very close to observed values. The inferred prototypes from the model are shown in the

figure as Ps. Note that these prototypes line up very closely with corresponding cue (C)

locations (and the boundary location in the one-cue condition), which is clearly consistent

with cues being used to determine spatial categories for encoding target locations. The pro-

totypes are shown to be located inside the short radius targets, reflecting to some degree a

center-based bias or tendency to assume the target is more central than it really is. These

results implicate cue-based bias effects late in the navigational search process. If such

effects were not present, then we would expect the average locations over the last 10 moves

to be distributed evenly around the targets rather than biased toward cue-based prototypes.

Hypothesis H1d proposes that the end-position error should be reduced with more cues.

To test this, we conducted a parallel analysis on the absolute value of end-position error,

corresponding to how far from the target the participant averaged over the last 10 moves.

The results are included in the corresponding column of Table 6. The main effect of Cue

indicated that the average distance from target varied with the number of cues. The distance

was the greatest for one cue (M = 2.05, SD = 0.46), and less for two cues (M = 1.70,

SD = 0.12) and three cues (M = 1.85, SD = 0.13). Pairwise comparisons using Tukey’s cor-

rection indicated that the one-cue condition differed significantly from the two-cue condi-

tion (p < .001) and from the three-cue condition (p < .01), but the latter two did not differ.

Hypothesis H3d proposes that the end-position error should be reduced for the 0� orienta-

tion when compared with the other three orientations. The main effect of orientation was

marginally significant, F(3, 348) = 2.605, pGG = .056. A planned contrast comparing the 0�
orientation (M = 1.80, SD = 0.30) with the other three orientations (M90� = 1.90,

SD90� = 0.05; M180� = 1.88, SD180� = 0.04; M270� = 1.87, SD270� = 0.04) did achieve signif-

icance, F(1, 121) = 6.27, p < .05). In addition, there was a significant Orientation · Cue

interaction, F(6, 348) = 3.27. This interaction indicated that orientation had a greater effect

in the one-cue condition than in two- or three-cue condition. Thus, these supplemental anal-

yses of absolute error provide support for the hypotheses that, late in the search, cues and

orientation still have their hypothesized relations on spatial memory.

4. Discussion

In this study, we introduced a new spatial memory task that combined aspects of two

well-known spatial tasks: the Morris water maze task and the dot-location task. Our results

provide compelling evidence for the robust role that surrounding cues play in spatial
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memory representation, influencing both early and late search behavior. Indeed, the pattern

of observed biases and errors were well predicted from models developed from research on

the simple dot-location task that utilized a rotating task field (Fitting et al., 2005; Fitting,

Wedell, et al., 2007; Fitting et al., 2008a). Because the pattern of results was somewhat

complex, we first review the key findings from this experiment.

4.1. Key findings

The key findings of the current navigation study can be summarized into three main

points. First, memory performance improves with an increase in the number of cues during

navigation, supportive of the first main hypothesis. This result is consistent with our previ-

ous finding from various memory location tasks (Fitting, Allen, et al., 2007; Fitting, Wedell,

et al., 2007; Fitting et al., 2008a, 2008b).

In this study, we found that excess moves, heading error, and absolute end-position error

decreased with more cues. In all cases, the one-cue condition had a greater error than the

two- and three-cue conditions, which did not differ from one another. Thus, there may be

diminishing benefits of extra cues. These are likely to be task dependent, as our human

analog of the water maze study showed a significant improvement from two to four cues

and our fixed orientation studies only began to show improvements with four or more cues

(Fitting, Allen, et al., 2007; Fitting et al., 2008b). Although one might argue that the

enhanced memory performance with more cues is a foregone conclusion in a navigation

task, other researchers have found essentially no effects when cues are removed on test trials

(Jacobs et al., 1998; Nadel et al., 1998). Because we did not vary the number of cues from

the learning to the test phase, we cannot say what effect this manipulation would have in the

current task. Instead, our results show the importance of cues in stabilizing memory when

cues are present at encoding and retrieval. Within the category-adjustment framework, such

stabilization reflects a strengthening of fine-grain memory near cues.

Second, and related to this last point, absolute error and bias in remembered locations

decreases as a function of proximity to cue locations, supporting the second main hypothe-

sis. For the absolute error measures, this pattern of cue-related error reduction was found in

our research using the rotated dot-location task, with absolute error minimized when the tar-

get was located close to a cue (Fitting, Wedell, et al., 2007; Fitting et al., 2008a). In this

study, it was manifest in the excess moves measures (H2a) and initial heading error (H2b),

and it was well described by the proximity-based model of Eq. 4. The convergence of these

findings across both tasks supports the idea that cues serve to bolster fine-grain information

in proximal regions, with the current navigation task indicating that these effects occur both

early and late in the process.

Turning to bias measures, effects were observed early in the search process at the initial

heading, manifest in the initial heading bias measure (H2c) and late in search behavior pro-

cess during the last 10 moves, manifest in the end-position bias measure (H2d). These effects

were well predicted by an extension of the previously developed flexible fuzzy-boundary

model (Fitting et al., 2005; Fitting, Wedell, et al., 2007; Wedell et al., 2007). Bias measures

early and late in the navigational process reflected a shift in remembered locations in the
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direction toward the nearest available external cue. In modeling the initial heading bias, we

assumed that cues and targets were encoded in a polar coordinate system as angular vectors

from the center of the task field (Fitting et al., 2005; Fitting, Wedell, et al., 2007). As shown

in Fig. 6, the pattern of initial heading biases reflected a shift toward the prototype’s loca-

tion, with estimates largely unbiased when targets were aligned with cues (or phantom

cues). Not shown in this figure is the overall initial heading bias toward the center of the cir-

cle. This bias is also responsible for the reduced initial heading error for short radius targets.

Finally, in modeling bias in the last 10 moves, we assumed a Cartesian coordinate

system that allowed us to simultaneously model bias in the horizontal and vertical directions

(Wedell et al., 2007). As shown in Fig. 9, the angular locations inferred for prototypes were

very closely aligned with the corresponding cue locations. The radial locations were well

inside the short radius points, suggesting a bias toward the center of the circle late in the

search process.

Third, the memory for targets was the best when the task field was presented at the same

orientation as in learning, consistent with the basic encoding specificity principle in which

memory is the best when cues at retrieval match those at encoding (Tulving & Thomson,

1973) and summarized in H3a–d. Similar findings were observed in the dot-location task for

measures of accuracy, comparing the 0� rotation trials to trials with rotations of 30�, 90�,

and 160� (Fitting, Wedell, et al., 2007; Fitting et al., 2008a). More generally, this finding

can also be related to the memory performance in mental rotation tasks, with the literature

indicating that mental rotation is associated with an angle-dependent increase in the

demands placed on working memory (Harris et al., 2000; Shepard & Metzler, 1971). Any

rotation therefore increases the cognitive cost of encoding, which increases with the degree

of rotation, resulting in an increased error and bias. In this study, this hypothesis was sup-

ported by the excess moves measure (H3a), initial heading error (H3b), initial heading bias

(H3c), and absolute end-position error (H3d). Data in the 0� rotation condition reflected more

accurate spatial estimations compared with data in the 90�, 180�, or 270� rotations.

4.2. Inferences from the four measures of memory performance

The current navigation task included four measures. Excess moves and initial heading

error index error measures across the entire search and early in search, respectively. Initial

heading bias and end-position bias index bias measures early and late in search behavior,

respectively. We discuss these measures and their implications for our hypotheses in turn.

4.2.1. Excess moves
This measure reflects the overall inaccuracy of place memory and is akin to the typical

swimming time measures used in water maze tasks. It is based on the idea that the efficiency

in navigation decreases as the memory for spatial target location degrades. Our results for

excess moves indicate that the memory for spatial location decreased with a decrease in the

number of available cues (H1a), with distance to the nearest cue (H2a), and with orientation

change of the task field from the presented orientation in the learning trials (H3a). These

effects were well captured by the proximity model, with accuracy decreasing as a function
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of proximity of the target locations to the available external cue. Increasing the number of

cues increases the likelihood of a target being close to a cue and hence increases the mem-

ory performance, H1a. The significant Orientation · Cue interaction indicated that the effect

of cue condition was much larger for the three shifted orientations than for the original 0�
learning orientation, consistent with H3a.

4.2.2. Initial heading error
This measure reflects the inaccuracy memory representations early in the navigational

process. Our results for the initial heading error indicated that, even early in search behav-

ior, the number of cues influenced the navigation process, with the initial heading error

reduced when more cues were available (H1b). The initial heading error can be interpreted

as reflecting both bias and inaccuracy in fine-grain memory. Consistent with H2b and the

excess moves data, the initial heading error was reduced for locations closest to cues. This

again supports the idea that cues help to anchor fine-grain memory for locations proximal

to them. Given our supposition that fine-grain memory is bolstered near cues, we would

have expected the initial heading error to be greater for short radius targets than for long

radius targets (H2b). However, the opposite result was found, with the initial heading error

greater for short radius targets. This finding would appear to contradict our result for excess

moves (H2a) in which short radius targets were harder to find due to reduced fine-grain

memory. We reconcile these findings by arguing that the reduction in initial heading error

was due to an unanticipated center-bias effect, a tendency to head toward the center of the

circle. As short radius targets are closer to the center, this bias offsets poorer fine-grain

memory for those targets. The initial heading error was also strongly influenced by the ori-

entation to the task field and the starting location. The effect of orientation effect was dem-

onstrated in excess moves (H3a). Its occurrence for the initial heading error indicates that

the disruptive influence of shifting orientation from the learning orientation occurs early in

the navigation process (H3b). The starting location effect, on the other hand, was not

observed for excess moves and appears to be tied to biases associated with initial heading

and discussed below. Overall, the initial heading error measure provided an important per-

spective on the early effects on spatial accuracy during the course of navigation and might

even be considered a measure of a discrimination task rather than a reproduction task.

Velea (2006) has recently illustrated the distinction between reproduction and discrimi-

nation task by proposing a statistical model that takes a novel approach to the analysis of

discrimination responses.

4.2.3. Initial heading bias
This measure is expressed using the polar coordinate system and reflects the angular bias

effects that occur early in the navigation process. As predicted in H1c, an increase in the

number of cues revealed a decrease in initial heading bias, due to the fact that bias tends to

increase with distance to the nearest cue. Further, as predicted by the flexible fuzzy-bound-

ary model, prototypes were located very close to the cue locations with biases occurring in

the direction toward the nearest cue (H2c). Consistent with past research and with error mea-

sures described above, the one-cue condition produced a phantom prototype that was located
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near the boundary opposite to prototype 1 (Fitting et al., 2008a) with the present finding

generalizing phantom cue effects to a measure of bias early in navigation. The phantom cue

in the one-cue condition might arise from a strategy for locating targets that are quite distant

from the single cue, where it would be advantageous to project an imaginary cue at that bor-

der and code location relative to it. Note that other researchers have also found evidence for

the use of phantom landmarks near a border (Schmidt, Werner, & Diedrichsen, 2003).

In addition to the hypothesized effects noted above, large effects were noted for starting

location and orientation on initial heading bias. The most prominent effect was the effect of

starting location, reflecting upward biases for east and west starting locations and a slight

leftward bias for north and south starting locations. This basic starting location pattern effect

might be due to an overall bias effect in the navigation process that occurs when sitting in

front of a two-dimensional computer display. This is supported by recent research (Kelly &

McNamara, 2008) as well as by the fact that even though the impact of starting location is

slightly varied by orientation or cue, the main pattern of the starting location effect is main-

tained, therefore indicating only some small fluctuation. The basic bias linked to orientation

was due to a clockwise bias in the first quadrant and a counterclockwise bias in the third

quadrant. These biases created Orientation · Angle effects, as different targets were linked

to these quadrants across orientation conditions.

4.2.4. End-position bias
This measure reflects the bias effects at the very end of the navigation process and thus

late effects of cues on navigation. As hypothesized, prototypes were influenced by the num-

ber of available cues, with end-position bias shifting toward the cue-based prototype (H2d).

This finding was supported by fitting end-position bias data to a basic model directly derived

from a previous study (Wedell et al., 2007). Strikingly, the prototype locations derived from

the last 10 moves, as shown in Fig. 9, line up closely with the cues and the phantom cue or

border location. Predicted bias closely corresponded to the actual bias, reflecting the

strength of the model.

To assess where the degree of bias decreased with more cues, we ran supplemental analy-

ses on absolute end-position error. The main effect of the number of cues indicated a

decrease in end-position error with more cues, consistent with H1d. The main effect of orien-

tation reflected reduced error in the 0� orientation, consistent with H3d.

4.2. Implication for spatial memory representation across different tasks

The findings of this study indicate that the cue-based spatial memory representations

inferred from the dot-location task with rotation generalize to a navigation task within a sim-

ple, computer-based environment. The patterns of error and bias from these studies suggest

that cues serve two functions. First, they provide the structural categorical representation

for remembering spatial locations in an environment with dynamically changing orientation

to targets. This conclusion was supported by a systematic bias of estimates toward cue

locations that we observe in both paradigms, as well as a systematic tendency to be less

biased when close to a cue. Second, cues help anchor fine-grain memory of the spatial
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representation for proximal targets. This conclusion was supported by reductions in error

measures for targets closest to the cues. This study indicates that effects on error and bias

occur early in the navigation process and persist to the last moves of the navigation process.

The generalization of this cue-based representation across tasks suggests that naviga-

tion tasks in real traversable spaces might reflect a similar pattern of observed biases

and errors as predicted from models presented in this study as well as in previous

works (Fitting et al., 2005; Fitting, Wedell, et al., 2007). For example, these effects

might be observed in navigation tasks such as the Morris water maze. In a human ana-

log task of the water maze, we found evidence for cue-based bias in the memory for

spatial location (Fitting, Allen, et al., 2007). However, that task examined only

end-point bias, used only three targets, and occurred in a vista space. Nevertheless, it

suggests that these results might generalize to tasks using a first-person perspective to

navigate in a larger environment. An important avenue for future research will be to

test how categorical and fine-grain effects of cues may apply to real and virtual envi-

ronments, when navigation through a vista and large-scale environment is required.

Navigation literature incorporates a distinction between high-fidelity and coarser infor-

mation used in egocentric or allocentric orientations (Mou, McNamara, Valiquette, &

Rump, 2004; Wang & Spelke, 2000). The two-level approach to spatial memory

appears to be well established across a number of different spatial memory paradigms.

Although much navigation work in virtual-reality environments has been conducted,

these studies have not examined the representational hypotheses we examined in this

current study (e.g., Jacobs et al., 1997; Skelton et al., 2006; Waller & Lippa, 2007).

Further, although we believe that the current study provides strong support for the flexi-

ble fuzzy-boundary model, other models of geometric category biases may be worth

investigating in this context, such as the dynamic field theory of spatial working

memory (Spencer, Simmering, & Schutte, 2006).

Additionally, it might be interesting to investigate the underlying process of spatial mem-

ory in map use. A recent study examined whether cues would be used in the categorical cod-

ing process within a static environment, with findings indicating that cues were largely

ignored in determining the categorical structure of spatial coding and supporting the mainte-

nance of a cue-independent category structure based on geometrically fixed categories rather

than cue-based categories (Fitting et al., 2008b). Despite a lack of cue effects on the catego-

rization scheme, findings, however, provided strong evidence that error and inconsistency of

estimation were reduced in the cue conditions, thus indicating some impact of cues. Such

results have important implications when assessing memory processes in map users or map

designers.

When viewing a map from a fixed orientation, it is possible that one would ignore a

cue-based representation (i.e., by landmarks) and develop geometric-based spatial cod-

ing (i.e., by cardinal directions). However, our studies indicate that when navigating a

space in which orientation varies, the cue-based orientation is preferred. Thus, we

would predict important consequences of map encoding based on orientation. Our

approach provides a quantitative method to assess biases and errors and infer the under-

lying spatial representation.
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Notes

1. Participants were able to continuously move the mouse image within the task field,

but the image would typically jitter rather than move smoothly in a given direction.

For example, if the participant moved the mouse on a 30� angle, the image would

move through the closest adjacent square and continue doing so, jiggling up or down

as the movement proceeded in the desired direction. Participants got used to moving

the mouse image in the preliminary practice trials and did not indicate frustration with

the jittering image.

2. We tried several different approaches for predicting excess moves and initial heading

error as a function of distance to cues. All of these did a fairly good job of predicting

cue-based relationships. We selected the model described here because it is consistent

with our theoretical framework and produced high R2 values.

3. The only other significant effect for excess moves was a three-way interaction of tar-

get angle, orientation, and starting position, F(63, 7308) = 1.83, p < .01. Because this

effect was small and effects related to the starting position are not of particular rele-

vance to the current set of hypotheses, we do not consider this effect further.

4. For the interested reader, the effects of initial heading error for orientation were as fol-

lows: Orientation: F(3, 348) = 14.41, p < .001; Target Angle · Orientation: F(21,

2436) = 28.75, p < .001; Radius · Target Angle · Orientation: F(21, 2436) = 3.03,

p < .001; Orientation · Start: F(9, 1044) = 7.45, p < .001; Cue · Orientation · Start:

F(18, 1044) = 3.29, p < .001; Target Angle · Orientation · Start: F(63, 7308) =

12.07, p < .001; Radius · Target Angle · Orientation · Start: F(63, 7308) = 2.41,

p < .001. The significant effects for starting location were as follows: Start: F(3,

348) = 84.21, p < .001; Cue · Target Angle · Start: F(42, 2436) = 2.05, p < .001;

and four were significant with including orientation (see above).

References

Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a

virtual Morris water task: A large and reliable sex difference. Behavioural Brain Research, 93, 185–190.

Astur, R. S., Taylor, L. B., Mamelak, A. N., Philpott, L., & Sutherland, R. J. (2002). Humans with hippocampus

damage display severe spatial memory impairments in a virtual Morris water task. Behavioural Brain
Research, 132, 77–84.

Crawford, L. E., Margolies, S. M., Drake, J. T., & Murphy, M. E. (2006). Affect biases memory of location:

Evidence for the spatial representation of affect. Cognition & Emotion, 20, 1153–1169.

Fitting, S., Allen, G. L., & Wedell, D. H. (2007). Remembering places in space: A human analog study of the

Morris water maze. In Th. Barkowsky, M. Knauff, G. Ligozat, & D. R. Montello (Eds.), Spatial cognition V,
LNAI 4387 (pp. 59–75). Berlin: Springer.

Fitting, S., Wedell, D. H., & Allen, G. L. (2005). Memory for spatial location: Influences of environmental cues

and task field rotation. In A. G. Cohn & D. M. Mark (Eds.), COSIT 2005, LNCS 3693 (pp. 459–474). Berlin:

Springer-Verlag.

1298 S. Fitting, D. H. Wedell, G. L. Allen ⁄ Cognitive Science 33 (2009)



Fitting, S., Wedell, D. H., & Allen, G. L. (2007). Memory for spatial location: Cue effects as a function of field

rotation. Memory & Cognition, 35, 1641–1658.

Fitting, S., Wedell, D. H., & Allen, G. L. (2008a). External cue effects on memory for spatial location within a

rotated task field. Spatial Cognition & Computation, 8, 219–251.

Fitting, S., Wedell, D. H., & Allen, G. L. (2008b). Cue usage in memory for location when orientation is fixed.

Memory & Cognition, 36, 1196–1216.

Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 32, 95–112.

Grön, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during

human navigation: Gender-different neural networks as substrate of performance. Nature Neuroscience,

3, 404–408.

Harris, I. M., Egan, G. F., Sonkkila, C., Tochon-Danguy, H. J., Paxinos, G., & Watson, J. D. G. (2000). Selective

right parietal lobe activation during mental rotation. Brain, 123, 65–73.

Hund, A. M., & Plumert, J. M. (2002). Delay-induced bias in children’s memory for location. Child Develop-
ment, 73(3), 829–840.

Hund, A. M., & Plumert, J. M. (2003). Does information about what things are influence children’s memory for

where things are? Developmental Psychology, 39, 939–948.

Hund, A. M., & Plumert, J. M. (2005). The stability and flexibility of spatial categories. Cognitive Psychology,

50, 1–44.

Huttenlocher, J., Hedges, L. V., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of

location. Cognition, 93, 75–97.

Huttenlocher, J., Hedges, L. V., & Duncan, S. (1991). Categories and particulars: Prototype effects in estimating

spatial location. Psychological Review, 98, 352–376.

Huttenlocher, J., Hedges, L. V., Lourenco, S. F., Crawford, L. E., & Corrigan, B. (2007). Estimating stimuli

from contrasting categories: Truncation due to boundaries. Journal of Experimental Psychology: General,
136, 502–519.

Jacobs, W. J., Laurance, H. E., & Thomas, K. G. F. (1997). Place learning in virtual space I: Acquisition,

overshadowing, and transfer. Learning and Motivation, 28, 521–541.

Jacobs, W. J., Thomas, K. G. F., Laurance, H. E., & Nadel, L. (1998). Place learning in virtual space II.

Topographical relations as one dimension of stimulus control. Learning & Motivation, 29, 288–308.

Jarrard, L. E. (1993). On the role of the hippocampus in learning and memory in the rat. Behavioral & Neural
Biology, 60, 9–26.

Kelly, J. W., & McNamara, T. P. (2008). Spatial memories of virtual environments: How egocentric experience,

intrinsic structure, and extrinsic structure interact. Psychonomic Bulletin & Review, 15, 322–327.

Maguire, E. A., Frith, C. D., Burgess, N., Donnett, J. G., & O’Keefe, J. (1998). Knowing where things are:

Parahippocampal involvement in encoding object locations in virtual large-scale space. Journal of Cognitive
Neuroscience, 10, 61–76.

Moffat, S. D., & Resnick, S. M. (2002). Effects of age on virtual environment place navigation and allocentric

cognitive mapping. Behavioral Neuroscience, 116, 851–859.

Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learning & Motivation,

12, 239–260.

Morris, R. G. M., Garrud, P., Rawlins, J. N. P., & O’Keefe, J. (1982). Place navigation impaired in rats with

hippocampal lesions. Nature, 297, 681–683.

Morris, R. G., & Parslow, D. M. (2004). Neurocognitive components of spatial memory. In G. Allen (Ed.),

Human spatial memory: Remembering where (pp. 217–247). Mahwah, NJ: Lawrence Erlbaum Associates.

Mou, W., McNamara, T. P., Valiquette, C. M., & Rump, B. (2004). Allocentric and egocentric updating of

spatial memories. Journal of Experimental Psychology: Learning, Memory, & Cognition, 30, 142–157.

Nadel, L. (1990). Varieties of spatial cognition: Psychobiological considerations. In A. Diamond (Ed.), Annals
of the New York Academy of Sciences (Vol. 608; pp. 613–636). New York: New York Academy of Sciences.

Nadel, L., Thomas, K. G. F., Laurance, H. E., Skelton, R., Tal, T., & Jacobs, W. J. (1998). Human place learn-

ing in a computer generated arena. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition:

S. Fitting, D. H. Wedell, G. L. Allen ⁄ Cognitive Science 33 (2009) 1299



An interdisciplinary approach to representing and processing spatial knowledge (pp. 399–427). Berlin:

Springer.

Newcombe, N. S., & Huttenlocher, J. (2000). Making space: The development of spatial representation and
reasoning. Cambridge, MA: MIT Press.

O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford, England: Clarendon Press.

Parslow, D. M., Morris, R. G., Fleminger, S., Rahman, O., Abrahams, S., & Recce, M. (2005). Allocentric spatal

memory in humans with hippocampal lesions. Acta Psychologica, 118, 123–147.

Prusky, G. T., West, P. W. R., & Douglas, R. M. (2000). Reduced visual acuity impairs place but not cued learn-

ing in the Morris water task. Behavioural Brain Research, 116, 135–140.

Sandstrom, N., Kaufman, J., & Huettel, S. A. (1998). Males and females use different distal cues in a virtual

environment navigation task. Cognitive Brain Research, 6, 351–360.

Schmidt, T., Werner, S., & Diedrichsen, J. (2003). Spatial distortions induced by multiple visual landmarks:

How local distortions combine to produce complex distortion patterns. Perception & Psychophysics, 65,

861–873.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(972), 701–703.

Skelton, R. W., Bukach, C. M., Laurance, H. E., Thomas, K. G. F., & Jacobs, W. J. (2000). Humans with trau-

matic brain injuries show place-learning deficits in computer-generated virtual space. Journal of Clinical and
Experimental Neuropsychology, 22, 157–175.

Skelton, R. W., Ross, S. P., Nerad, L., & Livingstone, S. A. (2006). Human spatial navigation deficits after trau-

matic brain injury shown in the arena maze, a virtual Morris water maze. Brain Injury, 20, 189–203.

Spencer, J. P., & Hund, A. A. (2002). Prototypes and particulars: Geometric and experience-dependent spatial

categories. Journal of Experimental Psychology: General, 131, 16–37.

Spencer, J. P., Simmering, V. R., & Schutte, A. R. (2006). Toward a formal theory of flexible spatial behavior:

Geometric category biases generalize across pointing and verbal response types. Journal of Experimental
Psychology: Human Perception & Performance, 32, 473–490.

Sutherland, R. J., & Rudy, J. W. (1987). Configural association theory: The role of the hippocampal formation in

learning, memory, and amnesia. Psychobiology, 17, 129–144.

Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory.

Psychological Review, 80, 352–373.

Velea, J. L. (2006). Recovering stimuli from memory: A statistical method for linking discrimination and

reproduction responses. British Journal of Mathematical and Statistical Psychology, 59, 321–346.

Waller, D., & Lippa, Y. (2007). Landmarks as beacons and associative cues: Their role in route learning.

Memory & Cognition, 35, 910–924.

Wang, R. F., & Spelke, E. S. (2000). Updating egocentric representations in human navigation. Cognition, 77,

215–250.

Wedell, D. H., Fitting, S., & Allen, G. L. (2007). Shape effects on memory for location. Psychonomic Bulletin &
Review, 14, 681–686.

Werner, S. & Diedrichsen, J. (2002). The time course of spatial memory distortions. Memory & Cognition,

30, 718–730.

1300 S. Fitting, D. H. Wedell, G. L. Allen ⁄ Cognitive Science 33 (2009)


