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Abstract. The concept of climate change prediction in response to anthropogenic forcings at multi-
decadal time scales is reviewed. This is identified as a predictability problem with characteristics
of both first kind and second kind (due to the slow components of the climate system). It is argued
that, because of the non-linear and stochastic aspects of the climate system and of the anthropogenic
and natural forcings, climate change contains an intrinsic level of uncertainty. As a result, climate
change prediction needs to be approached in a probabilistic way. This requires a characterization and
quantification of the uncertainties associated with the sequence of steps involved in a climate change
prediction. A review is presented of different approaches recently proposed to produce probabilistic
climate change predictions. The additional difficulties found when extending the prediction from the
global to the regional scale and the implications that these have on the choice of prediction strategy
are finally discussed.

1. Introduction

Climate change due to anthropogenic forcings is likely going to affect human
societies and natural ecosystems in the next decades of the 21st century (IPCC,
2001). In order to assess the impacts of climate change and to develop suitable
adaptation and mitigation policies, accurate climate change predictions are needed
at the global and, more importantly, the regional and local scales.

The term “prediction” has been often avoided within the global change debate
(the term “projection” is more often used, as described in Section 4.2) because it
can be easily misinterpreted by non experts due to its use in numerical weather
prediction. In fact, weather prediction aims at forecasting how specific weather
patterns evolve at time scales of the order of days based on the knowledge of the
state of the atmosphere at a certain time. Climate change prediction is of an entirely
different nature and it is important that the end users of the climate change infor-
mation understand this difference and are aware of the uncertainties and limitations
underlying current predictions of climate change.

This paper presents a discussion of the concept of climate change prediction
and of the approaches today available to produce climate predictions. After an
analysis of the basic concept of climate predictability, the paper focuses on the
issues of uncertainty and reliability associated with climate change predictions.
In this regard, the problem is also addressed of the additional difficulties found
when extending a climate prediction from the global scale to the regional and local
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scales. A review of different approaches recently developed to produce probabilistic
climate predictions is finally presented.

The paper focuses on the physical aspects of the global change problem, i.e. it
does not deal with the human dimension of global change, although the importance
of this dimension is fully recognized. On the other hand, the discussion is aimed
at cross-disciplinary communication at a stage in which advances in climate mod-
eling and computing technologies allow the development of new and promising
techniques for the production of a new generation of climate change predictions
suitable for use in impact assessment studies.

2. Some Concepts and Definitions

It is useful to define some concepts before beginning the discussion of climate
predictability. First, we are here specifically concerned with the problem of pre-
dicting climate change for the 21st century at temporal scales of multi-decadal to
centennial in response to anthropogenic forcing agents. These include greenhouse
gases (GHG), aerosols of anthropogenic origin (e.g. sulfate, black carbon, organic
carbon, industrial dust) and changes in land surface conditions. In addition to these
anthropogenic forcings, “natural forcings” external to the climate system are im-
portant and need to be considered. Natural forcings include variations in the flux
of energy from the sun (or “solar forcing”), emission of gases and particulate ma-
terial from major volcanic eruptions and natural aerosols (e.g. desert dust, sea salt,
biogenic carbon).

The climate system includes different components strongly coupled with each
other and characterized by different temporal scales of evolution: the atmosphere,
the oceans, the cryosphere, the biosphere/land hydrology and the chemosphere (i.e.
the chemical processes in the atmosphere, oceans and land). The atmosphere and
some aspects of the chemosphere are the fastest evolving ones, with characteristic
response times of up to months or years. The oceans, cryosphere and biosphere,
along with some components of the chemosphere, evolve with longer characteristic
times, up to multi-decadal and longer.

Human activites that lead to the generation of anthropogenic forcings have tra-
ditionally been considered as “external” to the climate system. Human societies,
however, can react to climate changes through adaptation and mitigation policies,
and this would in turn result in modifications of the anthropogenic forcings. There-
fore, the human component of the climate system should in principle be considered
as fully integrated with the others and research towards the development of fully
“integrated” climate system models is indeed underway. However this is still at the
initial stages and in this paper the anthropogenic forcings are considered as external
to the climate system.

Finally, we define the concept of climate change simulation. The most advanced
tools used for simulating climate change are coupled Atmosphere-Ocean General
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Figure 1. Illustrative example of a transient climate change simulation as measured by global tem-
perature (see text).

Circulation Models, or AOGCMs (e.g. Washington and Parkinson, 1986). These
models include descriptions of the global atmosphere, oceans, sea ice, land surface
processes and simple chemistry processes. Also, AOGCMs explicitly account for
the effects of anthropogenic and natural forcings.

Typically, a climate change simulation consists of a number of steps, as depicted
in Figure 1. In this figure global temperature is taken as a measure of climate, but
other variables such as precipitation or sea level could be used as well. First, the
AOGCM is integrated for a long period of time (multi-centennial) to achieve an
equilibrium across its fast and slow varying components. In these integrations the
forcing agents (e.g. the concentration of GHG) are set at pre-industrial values or at
values characteristic of the year 1860 (around the beginning of the modern industrial
era). This simulation is generally referred to as “Control” run and provides the
baseline to evaluate the performance of the model in simulating the basic state of
the global climate system. At some point within the Control run, which is typically
the nominal year 1860, anthropogenic and natural forcing agents are allowed to
change following reconstructions of these changes during the historical period
(1860 to present).

At the end of the historical period, the anthropogenic forcing agents are allowed
to change as a result of given “emission scenarios.” These are hypothesized future
trends in emissions of GHG and aerosols (or aerosol precursors) based on hy-
potheses of future socio-economical and technological development (IPCC, 2000).
The GHG emission scenarios are translated into GHG concentrations using bio-
geochemical cycle and chemistry models and these concentrations are then used
as input to the AOGCM for the climate change simulation. Some models take
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as input also anthropogenic aerosol concentrations while other models calculate
the aerosol concentration from the emission of precursors using simplified cou-
pled chemistry models. Similarly, the evolution of land use in response to different
socio-economic development scenarios can be assumed as an input to the model. To
date, however, most climate change simulations have not assumed changes in land
use.

An AOGCM “transient” climate change simulation for the 21st century ex-
tends from “present day” (say the year 2000) to the year 2100, so that the full
AOGCM experiment extends for the 240 year period of 1860–2100 (Figure 1).
This comprises the historical period [1860 – present day] and the “future” period
[present day – 2100]. Some simulations (not discussed here) extend beyond 2100
to examine the multi-centennial response to anthropogenic forcings, in particular
after the GHG concentration has stabilized to given levels. The Intergovernmen-
tal Panel on Climate Change (IPCC, 2000) has developed 40 scenarios of future
emissions divided into four families, each characterized by a storyline of future
socio-economical and technological development. Six of these scenarios, called
“marker scenarios” and referred to as A1T, A1FI, A1B, A2, B1 and B2, have been
identified as illustrative of the overall set and have been used in AOGCM transient
simulations.

In the analysis of a climate change simulation what is most often done is to
compare the climate statistics of a future period (e.g. 2071–2100) with those rep-
resentative of a present day period, often chosen to be 1961–1990. Alternatively,
one can analyze the trend in climate variables throughout the transient simulation.
The analysis of climate change implies considerations of statistical significance of
the changes and trends identified. This can be addressed with a number of statis-
tical tools (e.g. von Storch and Zwiers, 1999) that essentially compare the mag-
nitude of the change signal to measures of the underlying unforced variability (or
“noise”).

Finally, AOGCMs are used to simulate the response of the global climate sys-
tem to external forcings. However, due to their relatively coarse spatial resolution
(order of few hundred km), these models are often not suitable for simulating de-
tailed regional climate patterns. Therefore a number of “regionalization techniques”
have been developed in the last decade or so to enhance the regional informa-
tion obtained by AOGCMs and to provide fine spatial and temporal scale climate
detail (Giorgi et al., 2001a). Among these techniques are the use of high reso-
lution and variable resolution atmospheric GCMs (Deque and Piedelievre, 1995;
Cubasch et al., 1995), regional climate models, or RCMs (Giorgi and Mearns,
1991, 1999), and statistical downscaling methods (Hewitson and Crane, 1996). It
is outside the purpose of this paper to describe climate models and regionaliza-
tion techniques, and in this regard the reader can for example consult Washington
and Parkinson (1986), Trenberth (1992), Giorgi et al. (2001a) and references
therein.
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3. The Concept of Climate Change Prediction

In the late 1960s and mid 1970s the chaotic nature of the climate system was first
recognized. Lorenz (1969, 1975) defined two types of predictability problems:

1) Predictability of the first kind, which is essentially the prediction of the
evolution of the atmosphere, or more generally the climate system, given
some knowledge of its initial state. Predictability of the first kind is therefore
primarily an initial value problem, and numerical weather prediction is a
typical example of it.

2) Predictability of the second kind, in which the objective is to predict the evolu-
tion of the statistical properties of the climate system in response to changes
in external forcings. Predictability of the second kind is thus essentially a
boundary value problem.

In a predictability problem of the first kind, the predictability range is defined as
the time over which we can expect a prediction to be skillfull. This depends on the
temporal scale of the phenomenon under consideration. In general, the shorter the
characteristic temporal scale of a phenomenon, the shorter the predictability range
(Lorenz, 1969). This is because, if we compare two evolutions of a highly non-linear
and chaotic system (e.g the atmosphere) starting from two slightly different initial
conditions, the non-linearities in the system will make the two evolutions diverge
from each other and from the initial conditions to the point that after a certain time
(the predictability range) the memory of the initial conditions is essentially lost.
As a consequence, the longer the characteristic time of a phenomenon, and thus its
inertia, the longer the memory of the initial conditions and the predictability range.
For example, cumulus convection evolves very rapidly and has a predictability
range of the order of hours. Synoptic weather systems typically evolve with time
scales of several days, and this is the typical scale of their predictability range. On
the other hand, slower components of the climate system can be expected to be
predictable at longer time scales. For instance, the El Niño Southern Oscillation
(ENSO) phenomenon and other modes of the coupled atmosphere-ocean system
can be predictable at time scales of seasonal to interannual, while deep ocean
circulations (such as the Thermohaline Circulation or THC) can be predictable at
multidecadal to centennial scales.

From these considerations it follows that, since we cannot know exactly the
state of the atmosphere or any other component of the climate system, we cannot
predict its evolution with accuracy past the predictability range. In this latter case,
however, we can still predict the statistical behavior of the climate system in re-
sponse to external forcings. This is the realm of predictability of the second kind.
Climate change prediction at time scales of multi-decadal to centennial thus has a
predictability component of the second kind. We cannot predict the evolution of
specific weather events years or decades into the future but we can address questions
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such as: How will climate statistics such as mean precipitation, precipitation vari-
ability or frequency of extreme events change over the next decades in response to
changes of GHG concentration?

On the other hand, because of the long time scales involved in ocean, cryosphere
and biosphere processes a first kind predictability component also arises. The slower
components of the climate system (e.g. the ocean and biosphere) affect the statistics
of climate variables (e.g. precipitation) and since they may feel the influence of
their initial state at multi decadal time scales, it is possible that climate changes
also depend on the initial state of the climate system (e.g. Collins, 2002; Pielke,
1998). For example, the evolution of the THC in response to GHG forcing can
depend on the THC initial state, and this evolution will in general affect the full
climate system. As a result, the climate change prediction problem has components
of both first and second kind which are deeply intertwined.

This concept is illustrated in Figure 2, which shows two hypotetical future
climate evolutions as simulated by a climate model. In each simulation the GHG
concentration increases in the same way but starting from different times of the
Control run, and thus different initial ocean, sea ice and land surface conditions.
As illustrated, the two climate evolutions can potentially differ both in their mean
and variability characteristics. The relevance of the first kind predictability aspect
of climate change is that we do not know what the initial conditions of the climate
system were at the beginning of the “industrialization experiment” and this adds
an element of uncertainty to the climate prediction.

Another factor that affects the prediction of climate change is the random com-
ponent of both natural and anthropogenic forcings. Natural forcings such as changes
in solar radiation and volcanic eruptions are essentially unpredictable, i.e we do not

Figure 2. Illustrative example of two climate evolutions (as measured by variables such as temperature
or precipitation) characterized by different mean and variability response to the same increase in GHG
concentration. The differences have been exaggerated for illustrative purposes.
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know if and when major volcanic eruptions and changes of solar radiation fluxes
will happen in the future. Similarly, anthropogenic forcings are characterized by un-
predictable factors, such as new technological discoveries, major societal changes
or population decline due to large scale disease outbreaks.

To add difficulty to a prediction is the fact that the predictability of a system is
strongly affected by non-linearities. A system that responds linearly to forcings is
highly predictable, i.e. doubling of the forcing results in a doubling of the response.
Non-linear behaviors are much less predictable and several factors increase the
non-linearity of the climate system as a whole, thereby decreasing its predictability
(e.g. Rial et al., 2004).

One is the presence of positive feedback mechanisms which amplify the climate
response to forcings. Conversely, negative feedback mechanisms tend to render
the system less responsive to forcings and thus more stable and predictable. A
typical example of positive feedback mechanism is the ice-albedo feedback: GHG-
induced warming produces a decrease of surface ice cover; this in turn decreases
the surface albedo so that solar radiation is more effectively absorbed at the surface,
which then accelerates the warming and sustains a positive feedback. A negative
feedback mechanism is for example due to the carbon uptake by plants. With
increased CO2 concentration and in the absence of moisture and nutrient limitations,
plants grow more effectively. This in turn increases the CO2 uptake and reduces the
growth of CO2 concentration in the atmosphere. Other feedback mechanisms may
be associated with changes in atmospheric water vapor amounts, cloud cover, ocean
circulations and carbon storage (e.g. Rial et al. 2004). In some sense, mitigation
policies can be considered as a negative feedback mechanism associated with the
response to climate change of the human component of the climate system.

Threshold behaviors, in which a system gradually evolves until, after a certain
threshold, it collapses into a different state (possibly in a quasi-irreversible way) add
a strong element of non-linearity. An example of threshold behavior in the climate
system is the shutdown of the oceanic THC, which may occur very abruptly either in
response to external forcings or as a result of the internal variability of the climate
system (Stocker et al., 2001). Instances of THC shutdown events have been for
example identified as possible causes of abrupt climate changes in the past (NRC,
2002), and it has been hypothesized that intense GHG forcing might actually lead
to such an event (Cubasch et al., 2001).

A third important non-linear behavior of the climate system is the presence of
circulation regimes. For example, evidence has been found that the circulation of
the northern hemisphere tends to preferentially reside in certain more stable con-
figurations, or regimes (e.g. Corti et al., 1999), with relatively rapid transitions
from one regime to another. As depicted in Figure 3, the anthropogenic forcing
effects could manifest themselves either in changes of the frequency of occurrence
of such circulation regimes (Future 1) or in changes of the structure of the regimes
(Future 2) (Corti et al., 1999; Palmer, 1999). In addition, the coupled-ocean at-
mosphere system is characterized by a number of internal non-linear modes of
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Figure 3. Illustrative example of changes in circulation regimes. The panels depict the frequency
of occurrence of given circulation patterns as measured by a two dimensional phase space of the
circulation characteristics (e.g. EOFs; Corti et al., 1999). Two circulation regimes (high frequency
centers) are depicted for present day conditions (top panel). In Future 1 conditions, the structure of the
two regimes as measured by their position in the two dimensional phase space does not change, but the
frequency of occurrence of the regimes changes. In Future 2 conditions, the structure of the regimes
changes, since the position of the frequency centers is modified with respect to present day conditions.

variability, such as ENSO (e.g. Philander, 1990), the North Atlantic Oscillation
(NAO; e.g. Hurrell, 1995) or the Pacific Decadal Oscillation (PDO; Mantua et al.,
1997). The GHG forcing can thus modify the frequency, intensity and structure
of these internal modes, as well as their “teleconnection effects” on the climate of
different regions (e.g. Trenberth and Hoar, 1997).

Finally, many climate processes are characterized by an intrinsically stochastic
component, for example the triggering mechanism of cumulus convection (Palmer,
2001), and this makes the system less predictable. The non-linear and stochastic
nature of the climate system is such that climate exhibits a pronounced level of
internal unforced variability at a range of temporal scales, from sub-daily to multi-
decadal. This can mask forced climate change signals, and sophisticated detection
techniqes have been developed to extract the anthropogenically and naturally forced
signals from the underlying internal climate variability (Mitchell et al., 2001).

Therefore, because of the stochastic component of the future anthropogenic and
natural forcings, the lack of knowledge of the initial state of the climate system
(particularly its slow components) and the non-linearities and stochastic elements
in the behavior of climate, it is virtually impossible to exactly predict how climate,
as defined by its statistics, will actually evolve in the 21st century.
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Figure 4. Illustrative example of a bi-modal PDF of possible climate changes (as defined by a statis-
tics of interest, for example average temperature or precipitation) in response to the non-linear and
stochastic nature of the climate system and of the external anthropogenic and natural forcings. It is
also shown that only one of these possible changes will eventually occur, with the horizontal error
bar associated with this occurrence indicating the observing uncertainties for the statistics of interest.

Rather, it is more appropriate to say that a range of future climate conditions is
possible, each characterized by a certain likelyhood to occur. This can be depicted
(Figure 4) as a probability density function (PDF) of future climate change as
measured by the change in a certain climate statistics of interest (e.g. precipitation
over a region). The PDF of Figure 4 is only hypotethical and shows the possibility
of a multi-modal behavior (e.g. in response to a threshold effect), with the two
modes characterized by different likelihoods to occur. As shown in Figure 4, only
one of all possible futures will eventually happen but, as discussed above, this is
virtually impossible to predict. A measure of the width of the distribution in Figure
4 (e.g. the standard deviation) represents the uncertainty in future climates. This is
an “intrinsic” uncertainty in the sense that it is not tied to deficiences in the tools
used for the climate prediction or the lack of process understanding, but it is an
inherent property of the climate system. As a consequence, the objective of climate
change prediction is not to attempt to predict the exact future evolution of climate
but to reproduce as closely as possible the PDF of possible future climates.

This conclusion implies that ultimately a climate change prediction has to be
approached in probabilistic terms. In other words the climate change information
that can be provided to users is not “how climate will actually change” but is ”the
probability that the change in climate statistics will be within certain ranges or above
certain thresholds.” Another factor that substantially differentiates climate change
prediction from weather as well as seasonal to interannual prediction is that, for all
practical purposes, the former is not verifiable. The climate change information for
the 21st century is needed now, so that suitable adaptation and mitigation measures
can be evaluated. In addition, case studies similar to that foreseen for the 21st
century, in which the GHG concentration might increase by factors of 2–3 within
a century, are essentially unprecedented within the known history of the Earth. As
a result, we have no way of verifying the model performance in the production
of the climate change information of interest. Being this the case it is especially
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important that suitable measures and criteria be devised to assess the reliability and
uncertainty of a climate change prediction.

3.1. REGIONAL VS. GLOBAL CLIMATE CHANGE PREDICTION

Changes in globally averaged climate are primarily determined by the radiative
budget of the coupled atmosphere-ocean-land system, modulated by internal non-
linear feedbacks and modes of variability (e.g. Stocker et al., 2001). Hence, a posi-
tive global radiative forcing (e.g. due to GHG) generally results in global warming
and in an increase of global precipitation in response to increased evaporation from
the warmer land and ocean surfaces (Allen and Ingram, 2003). This is shown by
all global model simulations (Cubasch et al., 2001).

As the scale of interest is refined, several factors make climate change prediction
more difficult. First, changes in circulation features, even relatively minor, can have
profound regional impacts. For example, horizontal displacements of storm tracks
due to differential horizontal heating do not affect much the global precipitation
change, while they may cause large increases in precipitation over some regions and
corresponding decreases over other regions. Therefore in order to predict regional
climate changes it is necessary to predict the details of changes in atmospheric
circulations.

Secondly, regional climates are affected by fine scale forcings and processes,
such as due to complex topography, coastline and land use features, atmospheric
aerosols and other pollutants (Giorgi and Mearns, 1991). In many cases these forc-
ings and processes are not adequately represented in climate models (Giorgi et al.,
2001a). On the other hand, in some regions stationary forcings, such as due to
topography, may actually increase predictability by “locking” the local response to
large scale changes in circulations (e.g. Boer, 1994).

Thirdly, the effects of circulation regimes and internal modes of variability are
most important at the regional scale. In particular, often the climate of a region is
affected by processes occurring in remote regions through teleconnection patterns
involving the interaction of local energy sources with large scale circulations. For
example, it is well known that the NAO strongly influences the climate of Europe
and areas of North America (Hurrell, 1995). Similarly, ENSO is a major source of
variability over many tropical regions (e.g. Philander, 1990). The aerosol forcing
over certain regions can also have substantial climatic impacts over remote regions
(e.g. Menon et al., 2002).

Finally, climate variability tends to increase at fine scales. As an illustration of
this, Figure 5 shows the scale dependency of interannual variability of precipitation
(Giorgi, 2002b), and it can be seen that this dependency is increasingly pronounced
as the spatial scale is refined. The main implication of this scale dependency is that
the extraction of a detectable climate change signal from the underlying natural
variabiliy is much more difficult at fine regional scales than large scales.
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Figure 5. Scale dependency of seasonal (DJF, JJA) precipitation interannual variability over different
regions of the World (from Giorgi, 2002b). The interannual variability (INTVAR) is measured by the
coefficient of variation of seasonal precipitation calculated over the 30-year period of 1961–1990.

All the factors mentioned here clearly point to the difficulty of predicting regional
climates. This difficulty is magnified by the fact that limitations in computing re-
sources do not allow the explicit representation of fine scale processes in AOGCMs,
so that the combined use of different modeling tools is currently required to obtain
fine scale regional climate information.

4. Uncertainties and Methods in Climate Change Prediction

4.1. SOURCES OF UNCERTAINTY

In Section 3 we defined the objective of a climate change prediction as the pro-
duction of a PDF of possible future climates as defined by the statistics of a given
variable of interest. Figure 6 depicts an example of such prediction overlaid to the
PDF of possible actual futures of Figure 4. The width of the PDF is a measure
of uncertainty and this is generally different between the prediction and the “ac-
tual” future climate PDF. This difference measures the added uncertainty to the
“intrinsic” one (see Section 3) introduced by the imperfect knowledge of relevant
processes and the deficiences in the models, data and methods used to produce the
prediction (Jones, 2000; Visser et al., 2000). If we had a perfect climate system
model, a perfect observing system and a perfect knowledge of the statistical be-
havior of the external forcings, this added uncertainty would be eliminated and the
uncertainty in the prediction would essentially reflect the stochastic and non-linear
nature of the climate change problem. It is thus important to understand and assess
the contributions of different sources of uncertainty in a climate change prediction,
so that “bottleneck steps” in the prediction process can be identified and improved.



250 FILIPPO GIORGI

Figure 6. Illustrative example of a predicted vs. the “actual” climate change PDF of Figure 4. The
differences between the predicted and actual PDFs are a result of: (1) Imperfect knowledge of relevant
processes; and (2) added uncertainties due to deficiences in the models and assumptions used to
produce the prediction.

Figure 7. Cascade of uncertainties in a climate change prediction. The dashed line encompasses the
climate simulation segment of the cascade (adapted from Mearns et al., 2001).

Figure 7 illustrates the uncertainty cascade associated with the sequence of steps
involved in a climate change prediction (as described in Section 2). Each step is
characterized by an uncertainty which is transmitted to the next step in a cascade
process that determines the overall uncertainty of the prediction (Mearns et al.,
2001). Here we focus on the uncertainty associated with the steps enclosed by the
dashed line of Figure 7, i.e. the uncertainty related to the climate simulation process.
The elements that contribute to this uncertainty are depicted in Figure 8.
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Figure 8. Climate simulation segment of the uncertainty cascade of Figure 7.

In AOGCM simulations, uncertainty is due to three major contributing factors.
The first can be called “model configuration” uncertainty. It relates to the choice
of a model configuration, for example horizontal and vertical resolution, physics
parameterization schemes, parameter values and numerical algorithms. The choice
of a given model configuration is generally based on both scientific and compu-
tational considerations. As a result of this choice, which generally differs across
models, different AOGCMs can simulate quite different climate responses to the
same GHG forcing. For example global temperature changes from 1990 to 2100 in
the nine AOGCMs analysed by Cubasch et al. (2001) varied by up to 3–4◦C across
models for the same emission scenario. Similar conclusions are found when us-
ing different physics parameterizations or model parameters within a single model
(Murphy et al., 2004).

The concept of model-configuration uncertainty is closely related to that of
climate sensitivity, which is defined as the global near surface temperature response
to a doubling of carbon dioxide concentration (e.g. Cubasch et al., 2001). In the last
few generations of coupled climate models the range of climate sensitivity across
different modeling systems has remained fairly high, from 1.5 to 4.5◦C (Cubasch
et al., 2001). This is primarily due to the model representation of different feedbacks
in the climate system, such as the sea ice albedo feedback, the water vapor feedback
and the cloud-climate feedback.

The model configuration uncertainty increases as we move to the regional scale.
Giorgi and Mearns (2002) analyzed the temperature and precipitation changes
between the periods 2071–2100 and 1961–1990 in the same set of 9 AOGCMs
of Cubasch et al. (2001) over 22 regions of sub-continental size. They found that
the range of regional temperature change varied across models by 3–10◦C over
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different regions, with the largest range found in northern high latitude regions.
For regional precipitation change the range was even larger, and in many regions
a general disagreement across models was found not only in the magnitude but
also in the sign of the change. The model configuration uncertainty thus provides
a dominant contribution to the uncertainty cascade, and in fact about half of the
overall range in the IPCC global temperature change estimates has been attributed
to this factor (IPCC, 2001).

The uncertainty due to internal model variability (Figure 8) is attributed to the
dependency of the climate change simulation on the unforced variability of the
system and the initial state of the ocean and land conditions. A few studies have as-
sessed the role of this uncertainty source, both at the global (e.g. Boer et al., 2000;
Johns et al., 2001) and the regional scale (Giorgi and Francisco, 2000; Giorgi,
2002a), by analyzing ensembles of climate change simulations starting at different
times within long control simulations. When looking at average changes, the uncer-
tainty associated with the internal model variability appears to be much lower than
the model configuration uncertainty (Giorgi and Francisco, 2000). In other words,
average changes do not seem to depend strongly on the initial conditions of the
slow components of the climate system. However, Giorgi (2002a) found that the
internal model variability was comparable to the model configuration uncertainty
when looking at regional scale interannual variability. This points to the fact that
the role of different uncertainty sources depends on the climate variable of interest.

Finally, a third source of uncertainty is associated with the stochastic nature of
future natural forcings (see Section 3). Estimates of this uncertainty source show
that it can be significant, although less important than the uncertainty associated
with anthropogenic forcings in the 21st century (Stott and Kettleborough, 2002).

When regional climate information is produced by “post-processing” AOGCM
fields via different regionalization techniques, further uncertainties are added to
the climate prediction (see Figure 8). These are of different nature. First, sub-
AOGCM grid scale forcings, such as complex topography and coastline features,
can profoundly affect the local climate change signal both in sign and magnitude
(e.g. Giorgi et al., 1994; Jones et al., 1997). The choice of different regionaliza-
tion approaches (“approach uncertainty”) can affect the climate change simulation
(Murphy, 1999, 2000). In addition, regionalization tools are characterized by the
model configuration uncertainty (Giorgi et al., 2001a; Hewitson and Crane, 1996)
and the uncertainty related to internal model variability (Giorgi and Bi, 2000;
Christensen et al., 2001).

4.2. METHODS TO PRODUCE PROBABILISTIC PREDICTIONS OF CLIMATE CHANGE

As mentioned, the term projection has been most often used in the climate change
debate. Essentially, a projection of climate change differs from a prediction in that
a scenario of future emissions is assumed without giving it any specific likelihood
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of occurrence. A projection thus tells us what the climate response would be when
assuming a future forcing scenario. In this sense, most climate change studies to date
can be effectively considered as sensitivity studies rather than attempts at climate
change predictions (e.g. Jones, 2000).

If we however assign a probability to a certain emission scenario (or to the un-
derlying assumptions) we are effectively attempting a probabilistic prediction of
the socio-economic and technological development that define the scenario. As a
result, we set the grounds for an actual probabilistic prediction of climate change.
A number of approaches have been recently proposed to produce probabilistic pre-
dictions of climate changes, which ultimately result in the generation of simulated
PDFs of future climate conditions, or climate changes, as measured by statistics of
interest. A fundamental problem with producing PDFs of climate change is that in
principle a sufficient number of realizations is needed to explore the phase space
of possible change conditions taking into account the full range of uncertainties
implied by the steps in Figure 7.

To give an example, for all the 40 IPCC emission scenarios a range of biogeo-
chemical and chemistry models and relative model configurations should be used
to produce concentration scenarios. For each of these, a range of AOGCMs should
be used to simulate the resulting climate change, each model performing ensembles
of realizations with different ocean/sea ice initial conditions and model structural
configurations. Then, a range of regionalization methods and models, with differ-
ent structural configurations could be used to provide fine scale information to be
eventually utilized in an analogous range of impact models. It is evident that such a
process may require millions of simulations with complex models. This is clearly
not feasible.

As a result, approaches have been proposed to explore the climate change phase
space in a simplified way. Here we can divide these approaches into three categories:
(1) Use of simplified models and of prescribed PDFs to describe the uncertainty
of various model parameters; (2) Enlargement of the simulation sample size of an
AOGCM via suitable approximations and statistical techniques; (3) Use of informa-
tion from ensembles of simulations with different AOGCMs. It is not the purpose
of this paper to provide a comprehensive review of all studies related to these three
approaches. Rather, we provide examples to illustrate the underlying conceptual
methodologies.

As an example of the use of simple climate models to produce probabilistic
climate change predictions we can take the study of Wigley and Raper (2001).
They used a simplified climate modeling system consisting of a carbon cycle model
(Wigley, 1993) and a coupled Upwelling Diffusion / Energy Balance Model (Wigley
and Raper, 1992; Raper et al., 2001) to calculate PDFs of global temperature change
in response to the full range of IPCC emission scenarios. The various sources
of uncertainty described above were compounded into those of five key factors
in the modeling system: GHG emissions; parameters in the carbon cycle model
that generates the GHG concentrations; aerosol forcing; global climate sensitivity;
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Figure 9. PDF of global temperature change at different times into the 21st century as simulated by
the simple model approach of Wigley and Raper (2001).

vertical ocean mixing (which determines the lag between forcing and response).
The uncertainty in these factors was accounted for by assuming that they followed
prescribed PDFs. For example the emission scenarios were assumed to be all equally
likely (uniform PDF), while the climate sensitivity was assumed to follow a uniform
or a log-normal distribution. This can be considered as a Bayesian-type analysis
(Moss and Schneider, 2000) because it implies a subjective prior judgement of
the shape of the PDF of the critical parameters. By running many realizations
with the simple model in order to cover the different combinations of parameter
PDF, Wigley and Raper (2001) produced as end result the PDFs of global mean
temperature change shown in Figure 9.

As pointed out by one of the reviewers, one of the shortcomings of the Wigley
and Raper (2001) work is that IPCC (2000) did not assign any likelihood to the
SRES scenarios (they were considered equally plausible, not equally likely), so
that assigning PDFs to the scenarios might go against their fundamental design.
This problem has been circumvented by more recent work in which the uncertainty
associated to the emissions of GHG and aerosols was investigated using simplified
Earth System Models (Forest et al., 2002; Webster et al., 2002, 2003) or Integrated
Assessment Models (IAMs, Mastrandrea and Schneider, 2004). In these models
an economics/technology component is coupled to the physical models in order
to calculate emissions based on the economy and technology response to climatic
forcings. By assuming PDFs of different quantities of the economics and emission
models, the phase space of emissions can be explored with an approach conceptually
similar to that of Wigley and Raper (2001). Another example of application of a
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simple model to generating PDFs of climate sensitivities is that of Andronova and
Schlesinger (2001), who studied the effects of the uncertainty in radiative forcing
and natural climate variability.

The advantage of the use of simple models is that they are computationally inex-
pensive, and thus they allow to explicitly cover the phase space of the uncertainty in
key parameters. However, the information that can be obtained from these models
is necessarily limited. They can reproduce reasonably well the global temperature
behavior of full AOGCMs, and hence they can provide information on global tem-
perature change. However, they cannot reliably provide regional information or
information on changes in other climate variables of interest (e.g. precipitation,
circulations) and different climate statistics (e.g. variability and extreme events).
In addition, simple one-dimensional or two-dimensional models cannot simulate
many non-linear dynamical behaviors of the climate system, which we have seen
are very important at the regional scale. Scaling techniques have been developed
in order to relate regional changes to global temperature changes (e.g. Mitchell
et al., 1999). They have been proven useful to downscale temperature, however
their applicability to a wide range of variables and climate statistics has yet to be
proven. The recent development of Intermediate Complexity Models (e.g. Claussen
et al., 2002), which account for most of the non-linear behaviors of the atmo-
sphere, may allow the application of three-dimensional simplified models to climate
prediction.

As an example of climate change PDF produced with a single AOGCM, we
use the work of Stott and Kettleborough (2002). They used the Hadley Cen-
tre AOGCM to produce probabilistic predictions of global temperature changes
at different decades within the 21st century (see Figure 10) for different emis-
sion scenarios. First, a PDF of scaling factors is calculated, by which the model

Figure 10. PDF of global temperature change for four IPCC emission scenarios at different times
into the 21st century as simulated by the AOGCM-based approach of Stott and Kettleborough (2002).
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response to different forcings (GHG, aerosols, natural) can be multiplied and still
match the observed record for the 20th century. The spread of this PDF is deter-
mined by the interdecadal internal variability of the model, which provides dif-
ferent estimated contributions of the external forcings to the 20th century warm-
ing. The scaling factors are a measure of the forcing-response relationship in the
model and are calculated using an optimal fingerprinting technique (Stott et al.,
2001).

The effects of the future natural forcings (solar and volcanic activity) and
the internal unforced variability of the climate system were also approached in
a probabilistic way. To describe the former, Stott and Kettleborough (2002) es-
timated the variance of the global mean temperature response to the solar and
volcanic forcings in their 20th century simulations and assumed that the future
global temperature response can be described as a normal distribution with the
same variance. Similarly, the effect of the internal variability was described as a
normal distribution with variance estimated from an external forcing-free control
simulation.

By random selection from the relevant PDFs, the distributions of scaling factor,
externally-forced natural variability and internal variability were finally combined
to provide a PDF of the global temperature response to anthropogenic forcings
(Figure 10). The assumption of scaling and of normal distributions for the forced
and internal natural variability thus effectively allows one to enlarge the sample
size used to construct the predicted PDF. This concept of forcing-response scaling
is also used by Allen et al. (2000) to estimate the uncertainty in climate predictions
for the early decades of the 21st century.

The concept of factor scaling is adequate for global temperature predictions
(Allen et al., 2000). However, its applicability to the regional scale and to variables
different from temperature is more questionable since, as mentioned, regional pro-
cesses are more non-linear in nature. As a result, approaches to the prediction of
regional climate changes have mostly relied on the direct use of output from en-
sembles of AOGCM simulations. In this regard, the studies of Räisänen and Palmer
(2001), Palmer and Räisänen (2002), Giorgi and Mearns (2002, 2003) and Murphy
et al. (2004) are here highlighted.

Räisänen and Palmer (2001) and Palmer and Räisänen (2002) used the ensem-
ble of 19 CMIP simulations (Coupled Model Intercomparison Project; Meehl et al.,
2000) to estimate probabilities of climate change at time of CO2 doubling in tran-
sient climate change simulations with a 1%/year CO2 concentration increase. Their
approach is borrowed from seasonal climate prediction, whereby the probability of
regional climate change (e.g. for temperature or precipitation) exceeding a given
threshold is given by the fraction of the total number of model simulations that
predict such a change. Palmer and Räisänen (2002) then extended this method to
the prediction of changes in the probability of occurrence of extreme seasons. In
their approach, the probability of a season being outside the 2 or 3 standard devi-
ation range is calculated as the fractional number of seasons in the full ensemble
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of model simulations that exceed this range. This probability was shown to signif-
icantly increase over some regions in doubled CO2 conditions.

In these studies each model simulation was treated as equally believable. There-
fore the best estimate climate change derived from the ensemble of models was
given by the ensemble average change, with a corresponding measure of uncer-
tainty being the standard deviation of the changes. Giorgi and Mearns (2002, 2003)
attempted to take into account the quality, or reliability, of the model simulations in
their ”Reliability Ensemble Averaging (REA)” method. In the REA method each
model simulation is assigned a “reliability” parameter which accounts for different
criteria of model reliability.

One of these criteria is the ability of the model to simulate historical climate
conditions. The better a model performance in this respect, the more reliable we
can expect this model to simulate climate changes. Another criterion often used
to assess reliability is the agreement across models: a prediction is deemed more
reliable if different models tend to agree on the magnitude and sign of the pre-
diction (Giorgi et al., 2001b). For example, two models were not included in the
IPCC final estimate of global temperature change uncertainty (1.4–5.8 ◦C by 2100)
because they were considered to be outliers compared to the others (Cubasch et al.,
2001). A third criterion of model reliability, which however has been little used
to date, is the model ability to simulate climate conditions different from present,
such as paleoclimates. This criterion can be especially useful to verify a climate
prediction system as the climate change signal becomes stronger into the 21st
century.

Regardless of the specific criteria used to establish a model reliability, the REA
method provides a conceptual and quantitative framework for using such criteria
in the analysis of ensembles of climate change simulations (Giorgi and Mearns,
2002). In the REA method the best estimate change is given by a weighted average
of the changes simulated by individual models, with the weighting factor given
by the reliability parameter. Similarly, the uncertainty range is measured by the
weighted root mean square distance of the individual simulated changes from the
REA average change (analogous to the standard deviation if all the models are
equally weighted). A further advantage of the REA method is that it allows a
quantitative measure of the overall reliability in the prediction, which is given by
the REA weighted average of the models’ reliability parameter. This is important
information to assess the quality of the prediction.

More recently, Giorgi and Mearns (2003) extended the REA method to the cal-
culation of probabilities of regional climate changes being above given thresholds.
Figure 11 shows probabilities of surface air temperature and precipitation changes
for the last three decades of the 21st century calculated for different regions of the
world and based on an ensemble of 9 AOGCM transient climate change simula-
tions. In the calculation of these probabilities, the likelihood associated to a given
model simulation is assumed to be proportional to the reliability parameter. This
adds a Bayesian element to the method, in that a subjective assumption is made



258 FILIPPO GIORGI

Figure 11. Probability of seasonal (DJF, JJA) temperature and precipitation changes being above
given thresholds as calculated via the REA method of Giorgi and Mearns (2002, 2003). The changes
are calculated for the 2071–2100 period compared with the 1961–1990 period. Data from 9 different
AOGCM simulations for 10 regions of sub-continental scale are used (from Giorgi and Mearns, 2003).

of the likelihood of a model prediction. The REA method has been extended to a
rigorous Bayesian treatment by Tebaldi et al. (2005).

Finally, Murphy et al. (2004) extended previous approaches in order to generate
PDFs of climate sensitivity based on a relatively large ensemble (55 members) of
global model simulations with the Hadley Centre AOGCM. The different simula-
tions varied in the value of relevant model parameters with the constraint of yielding
results consistent with observations. In the generation of the PDF Murphy et al.
(2004) used weighting factors conceptually similar to the reliability factors of the
REA method but based on a greater number of model variables. They then explored
the phase space of climate sensitivity by linearly compounding the contributions
of different model parameters.
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5. Summary and Discussion

The main argument of this paper is that, because of the very nature of the problem,
climate change prediction needs to be approached in a probabilistic way. This
implies that a climate change prediction essentially consists of the construction
of a PDF of possible changes which accounts for the uncertainties underlying
the different steps involved in the prediction. As we discussed, a portion of this
uncertainty is intrinsic to the climate system (including the human component)
and thus cannot be reduced. In fact, it would be desirable to capture the full range
of possibilities described by the intrinsic uncertainty, including in particular low
probability/high impact events. On the other hand, another portion of the uncertainty
range is attributable to deficiences and approximations in the modeling tools utilized
to make the prediction. It is therefore important that the causes of this segment of
the uncertainty range are fully understood and that this understanding leads to a
reduction of this uncertainty.

To fully cover the phase space of climate change accounting for all sources
of uncertainty is a formidable task. Some of the methods reviewed here attempt
to cover this space by utilizing simple models or enlarging the simulation sample
size via suitable assumptions and techniques. These approaches have proven to
be very useful to understand the uncertainties related to climate change prediction.
However, they are mostly viable for globally averaged changes, a limited number of
variables (e.g. temperature) and low order statistics (e.g. average changes). Regional
climates are highly non-linear and often the climate change information is needed
for higher order statistics (variability and extremes) and multiple variables (e.g.
precipitation, wind intensity, solar radiation etc.). In this case the main source of
climate change information is provided by three-dimensional climate models. In
this regard, methods have been reviewed in which the climate change information
is drawn from ensembles of different AOGCM experiments.

With these premises and within the framework of limited, although rapidly in-
creasing, computational resources available for climate change research, the ques-
tion is posed of how to best approach the problem of climate prediction. The basic
issues underlying this question are, in the opinion of the author, the following:

1) The climate change information should be provided at scales suitable for
impact assessment studies. This implies that fine scale regional and possibly
local information is needed.

2) All important climate system processes and feedbacks should be accounted
for in the models. This implies that comprehensive models should be used to
fully understand the climate change processes and produce credible predic-
tions. In this regard, a prominent missing component in most climate change
simulations to date is land use change and biosphere–atmosphere feedbacks.
Studies have indicated that these processes can be important in modulating
the climate change signal especially at the regional scale (Cox et al., 2000;
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Chase et al., 2001; Zhao et al., 2001, 2002; Friedlingstein et al., 2003). An-
other important missing forcing in most current climate change experiments
is that due to carbonaceous aerosols (e.g. Menon et al., 2002).

3) The climate change phase space should be covered sufficiently well to yield
robust PDFs. This implies the need of large ensembles of climate change
simulations with different forcings, model configurations, initial conditions
and regionalization techniques.

Given limited computing resources, the three points above require a suitable
compromise between model resolution, complexity and simulation sample size.
Figure 12 depicts a possible strategy to climate change prediction that aims to
achieve such a compromise. The strategy is based on the use of a set of different
comprehensive climate system models with intermediate atmospheric resolution,
say 1–2 degrees, run for large ensembles of simulations accounting for the uncer-
tainties in anthropogenic forcings (GHG concentration, aerosols, land-use change),
internal variability and feedbacks in the climate system, external natural forcings
and model-related uncertainties. Global climate models with these intermediate res-
olutions appear capable of reproducing the main features of the general circulation
of the atmosphere (McAvaney et al., 2001; Giorgi et al., 2001a).

Once this set of simulations is completed, some cluster-type analysis could be
performed to group the large ensemble of simulations in primary “modes” of change.
The emphasis in this excercise could be on major changes in circulation structure
and regimes, coupled variability modes and components of the hydrologic cycle.
As a third step, different regionalization techniques could be applied to provide
fine scale regional information for cases representative of the major change modes
identified.

Figure 12. Depiction of a possible strategy for climate change prediction (see text).
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Regardless of the specific strategy adopted, it is essential that the phase space of
climate change is extensively explored and that predicted probabilities of change
are provided to the end users in order to carry out risk analysis. An important
step towards this goal is to assign likelihoods to the emission scenarios or to the
underlying assumptions and parameters. The IPCC Third Assessment Report ex-
pressely avoided this (IPCC, 2000). However, as we have seen, individual research
efforts are already applying PDFs to the scenarios so that inevitably this is a task
that the scientific community will have to soon take on (Schneider, 2001, 2002).
In principle, of course, a rigorous climate change prediction should be carried
out with fully integrated climate system models including the impact and human
components. In this case, the GHG emissions would be directly calculated by the
model instead of being specified through scenarios. Research in this direction is
in its early stages and, as we have seen, some simplified integrated assessment
models are today available (e.g. Webster et al., 2003; Mastrandrea and Schneider,
2004).

Increasing attention is going towards assigning likelihoods and reliability to
model simulations. Although this can be done within a formal framework, such
as in the REA method, it still requires a subjective component in the evaluation
of a climate change simulation, especially in view of the fact that such simulation
cannot be easily verified against observations. The problem of climate change
prediction has thus an inherent Bayesian component whose implications need to
be fully explored. Criteria for evaluating the reliability of a prediction need also
to be better elucidated within rigorous quantitave frameworks (Zwiers and Zhang,
2003).

In conclusion, the availability of a hierarchy of climate system models of
increasing complexity allows us to move from a stage of sensitivity and process
studies to a stage in which we can start to produce actual probabilistic predictions
of climate change for use in impact assessment work. This is made possible
also by the recent tremendous development in computer technology, which has
led not only to the construction of supercomputers of unprecedented power
(e.g. the Earth Simulator) but also to desktop technology powerful enough to
run global and regional climate models. The latter has enlarged substantially
the scientific community actively engaged in climate modeling, as for example
in the climateprediction.net project. It can thus be envisioned that the climate
change phase space can be explored through large international collaborative
projects.
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